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• Mixed-method approach used to 
decompose rice yield gaps with 
landscape-scale surveys, on-farm exper
iments, and modeling. 

• Sizeable exploitable (2.58 t ha− 1) and 
total yield gaps (4.85 t ha− 1) were 
documented across the Terai of Nepal. 

• Principal drivers of yield outcomes 
include irrigation intensity, rainfall, ni
trogen and phosphorus fertilizers. 

• Top-yielding farmers had lower GHG 
emission intensities (43%) with 
increased water and nutrient use 
efficiencies. 

• Transformative rice yield (1.86 t ha− 1) 
and profitability (US$ 243 ha− 1) gains 
were achieved by ‘good agronomic 
practices’.  

A R T I C L E  I N F O   

Editor: Dr Jagadish Timsina  

Keywords: 
Yield gap 
Sustainable intensification 
Machine learning 
Sustainability indicators 
Good agronomic practices 

A B S T R A C T   

CONTEXT: Rice is the primary staple food crop in Nepal, contributing 20% of the agricultural gross domestic 
product and more than 50% of the total calories in the national diet. Nevertheless, the productivity of rice (3.36 t 
ha− 1) is the lowest in South Asia region. 
OBJECTIVE: The objective of this study was to employ a mixed-methods approach to characterize and decompose 
yield gaps (YGs) in the context of identifying sustainable intensification pathways for rice production in Nepal. 
METHODS: Methodologies include: a) landscape-scale crop diagnostic survey on crop management, field attri
butes, and productivity outcomes combined with gridded soil and daily weather data to decompose rice yield 
gaps into constituent factors with machine learning diagnostics; b) with survey data, computation of key per
formance indicators to identify factors associated with productivity, profitability, and resource use efficiencies; c) 
complementary multi-location on-farm experiments (2011–2017) evaluating new agronomic management 
practices; and d) dynamic simulation (ORYZA3) to derive estimates of rice yield potential. 
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RESULTS AND CONCLUSIONS: Analysis of survey data suggests an exploitable YG of 2.57 t ha− 1 (40%) and the 
total YG of 4.85 t ha− 1 (55%) indicating substantial scope for increasing rice yields in Nepal. Frequency of 
irrigation, amount of late-season rainfall, soil type, amount of early-season rainfall, presence of water stress, soil 
pH, and nitrogen (N) and phosphorus (P) fertilizer rates are the principal determinants of productivity outcomes 
in descending ranked order. Efficiency metrics suggest rice farmers in the study region make good use of fertilizer 
inputs, but since application rates are very low (e.g. most farmers apply <20 kg P ha− 1) unsustainable mining of 
soil nutrients is likely common. Farmers in the top 10% of the yield distribution had lower greenhouse gas 
emission intensities (− 43%), increased water productivity (+66%), and higher use efficiencies of N and P fer
tilizers (+28% and + 20%, respectively), suggesting that yield intensification can be achieved without tradeoffs 
with key environmental performance indicators. On-farm experiments conducted over several seasons support 
insights from surveys by demonstrating that major gains in rice yield (1.86 t ha− 1) and profitability (US$ 243 
ha− 1) are achievable through the adoption of good agronomic practices. 
SIGNIFICANCE: Through a mixed methods approach, our results suggest that adoption of integrated ’good 
agronomic practices’ can close YGs and improve food security outcomes associated with the rice-based agri
cultural systems of Nepal while simultaneously preserving or enhancing key sustainability and livelihood 
objectives.   

1. Introduction 

Rice (Oryza sativa L.) is the principal staple crop in Nepal. It is grown 
in diverse production conditions ranging from tropical plains of the 
Terai region to mountain terraces at elevations up to 3050 m above sea 
level. Approximately 70% of the total rice production is in the Terai 
region (CBS, 2019). Rice alone contributes nearly 20% to agricultural 
gross domestic product and supplies more than 50% of the total caloric 
intake. Compared to other neighboring countries, like India (3.9 t ha− 1), 
Bangladesh (4.7 t ha− 1), China (7.02 t ha− 1), and Pakistan (3.84 t ha− 1), 
the productivity of rice (paddy) in Nepal is the lowest in the region (3.36 
t ha− 1) (FAOSTAT, 2021). Before 1980, Nepal was an exporter of rice 
but thereafter it became a net importer with the cost of imports rising to 
US$ 270 million in 2016 (Pudasainee et al., 2018). Increased rice im
ports are associated with other structural changes in Nepal’s economy 
including increasing labor wage rates fueled by out-migration and 
associated profitability reductions in rice cultivation (Bhandari et al., 
2015). The current average annual growth rate for rice yield in the 
country is approximately 1%, which is lower than the population growth 
rate (FAOSTAT, 2021). Rice demand has further been increasing due to 
dietary shifts associated with urbanization and increasing road acces
sibility connecting rural villages with larger markets. Together, these 
factors strongly suggested an opportunity to reinvigorate rice produc
tivity growth in a manner that enhances sustainability. 

The Nepal Government has formulated various policies and national 
programs that address the intensification of rice production, including 
the Agriculture Development Strategy (ADS) 2015–2035, National Seed 
Vision, 2013–2025, and the Prime Minister Agriculture Modernization 
Project (PMAMP) (MoALD, 2020). While it is premature to judge the 
success of these initiatives, many of the technologies and management 
approaches that have been prioritized are incompletely supported by 
scientific evidence and, even where evidence is comparatively strong, 
multi-dimensional assessment of productivity, profitability, and sus
tainability are often lacking. To help close knowledge gaps with national 
partners in the public and private sector, the Cereal System Initiatives 
for South Asia (CSISA, https://csisa.org) was initiated in Nepal in 2009 
to assist these partners to sustainably enhance the productivity and 
profitability of cereal systems. 

Yield gap (YG) analysis provides a framework for contextualizing 
current farmers’ yields against potential yields in different production 
environments (van Ittersum et al., 2013). Various methods can be used 
to estimate crop yield potential including dynamic simulation and 
controlled-condition field experiments (Devkota et al., 2019a; Lobell 
et al., 2009; Rhebergen et al., 2018; van Ittersum et al., 2013). Never
theless, YG analysis is of limited use for intervention prioritization for 
agricultural development if the multiple causes for lower farmer pro
ductivity are not identified; i.e. YG must ‘decomposed’ by their con
stituent factors (Devkota et al., 2015, 2016; Lobell et al., 2009). 

Controlled on-farm experiments offer a conceptually straightforward 
approach for assessing the value of agronomic interventions, but results 
cannot be generalized in complex crop production environments where 
management and resource factors vary widely at the landscape scale (e. 
g. in Nepal). As a complement to on-farm research, diagnostic surveys 
can efficiently capture major drivers of farmer exploitable yields across 
environmental and management gradients but are less adept at assessing 
potential contributions of new technologies and management practices 
that are not yet practiced at scale by farmers. Further, both on-farm 
experiments and diagnostic surveys have limited capacity to under
stand the influence of dynamic climate factors on yield and yield sta
bility. Hence, dynamic simulation models can provide a useful 
complement to YG studies in production ecologies like rice-wheat sys
tems in Nepal where inter-annual climate variability is high and 
resource-poor farmers, in general, exert less control over the environ
ment through practices like ample irrigation and timely crop establish
ment. In many circumstances, conjunctive use of all three approaches is 
likely needed to understand YGs and their factor-based constituents. 

The concept of ‘sustainable intensification’ aims to achieve or 
maintain high levels of crop productivity while reducing environmental 
damage, building resilience, ensuring essential ecosystem services, and 
improving rural livelihoods by enhancing profitability (The Montpellier 
Panel, 2013). In practice, this implies that gains in productivity have to 
be accompanied by efficient use of all resources, including land, labor, 
water, energy, and other critical inputs like mineral fertilizers and ag
rochemicals (Rockström et al., 2017). To ensure that potential rice yield 
gains support broader sustainable development goals, the objectives of 
this study were to 1) determine rice YGs and YG drivers with a mixed- 
methods approach combining diagnostic surveys and machine 
learning with on-farm experiments and dynamic simulation modeling; 
2) assess the contributions of different agronomic interventions to close 
YGs; 3) understand the economic (gross margin) and environmental 
(nutrient use efficiencies, water productivity, estimated greenhouse gas 
emissions) dimensions of yield intensification. 

2. Materials and methods 

2.1. Study sites 

The CSISA project has activities across eight Terai districts (Fig. S1). 
The study sites have sub-tropical, warm, and humid climatic conditions 
with a wet monsoon season (‘kharif’; May through September) followed 
by a long dry season marked by cooler temperatures (October through 
March). The average annual maximum temperature is 30.6 ◦C, the 
minimum temperature 18.8 ◦C, and the mean solar radiation is 15.8 M J 
m− 2 d− 1 (Fig. S2). In these Terai districts, 89% of the mean total rainfall 
(1566 mm) occurs from May 1st to September 30th. 
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2.2. Diagnostic survey 

2.2.1. Sampling framework 
The sample (location and household) for the rice landscape diag

nostic survey was determined using remote sensing-based normalized 
difference vegetation index (NDVI) values derived from Landsat images 
at a spatial resolution of 30 × 30 m2. Images were analyzed from the 4th 
week of August 2016, when rice was anticipated to be at or near 
maximum seasonal NDVI. To guide sampling within each of the six 
target districts, the mean, standard deviation (SD), minimum and 
maximum value for each district were computed (Fig. S3). Sampling 
locations for each district were selected based on a proportionate 
method assuming a normal data distribution. The gridded NDVI values 
were first stratified into four quartiles and samples were drawn 
randomly within each quartile. Using this approach, a total of 1052 
production plots were selected (48, 48, 24, and 24 on two sides of the 
curve, i.e., mean NDVI ±1 SD, and mean ± 2 SD) from each district for 
the diagnostic survey. 

2.2.2. Data collection 
For the fields identified through Landsat, a diagnostic survey was 

implemented to collect data using a semi-structured questionnaire 
designed to capture rice management practices, site characteristics, 
basic socio-economic information, and farmer-reported crop yields from 
the 2016 rice season. The survey was carried out on a digital platform 
(open data kit; ODK) and the geo-location of each plot was recorded (i.e., 
latitude and longitude). Farmers were asked about the timing of all 
major field operations, methods used for crop establishment, the variety 
planted as well as seedling age at transplanting, the amount and timing 
of all organic and inorganic fertilizer inputs, the number of irrigation 
events, and pest and disease control measures. Farmers were also asked 
for visual observation on crop stress due to water, weeds, diseases, and 
pests. The entire dataset and codebook are available through the CIM
MYT data repository: https://data.cimmyt.org/dataset.xhtml?persis 
tentId=hdl:11529/10968. 

2.2.3. Computation of production parameters used and economic and 
environmental sustainability indicators 

Crop production parameters for example amount of farm-yard 
manure (FYM) and chemical fertilizers (N, P, K, and Zn), amount of 
water (irrigation + rainfall), planting and harvesting time, variety, seed 
source, seedling age, and crop maturity duration were computed across 
districts. To assess the broad-based performance of the surveyed rice 
fields, seven economic and environmental indicators were estimated for 
each six surveyed districts and three yield category (mean of bottom 10, 
middle 80, and top 10%) farmers. These seven indicators includes: (1) 
grain yield; (2) gross margin, (3–5) nitrogen-, phosphorus-, and 
potassium-use efficiencies (NUE, PUE, and KUE); (6) water productivity; 
and (7) greenhouse gas (GHG) emissions intensity (GHGI). Grain yield 
was computed from the farmers’ reported yield from the largest plot 
based on sun-dry weight. As the questionnaire in this survey was not 
designed to assess profitability, we used secondary literature from the 
same region combined with key informant surveys, government fixed 
price policies, and input price recall interviews to compute gross margin 
(profitability) for the surveyed farms (Table S1). Gross value was 
computed considering per kg grain price of US$ 0.19 (the government 
price validated with the market price at that time and exchange rate of 
US$ 1 = Nepalese rupees of 105), straw price of US$ kg− 1 0.026, and 
harvest index of 48% (IRRI, 2004). The cost of production was calcu
lated from the inputs (seed, chemical, and FYM fertilizers, irrigation, 
herbicide) and total labor and machinery used (for land preparation, 
crop establishment, harvesting, threshing, drying, and cleaning) 
(Table S1). The gross margin was computed by subtracting the total 
production cost from the gross value including grain and straw. Pro
duction cost also includes the imputed value of the family labor but 
excludes land rental charges and fixed costs like machinery since these 

could not be estimated based on survey data. The NUE, PUE, and KUE 
were determined only for those farmers who applied these fertilizers and 
were calculated as partial factor productivity (kg grain per kg nutrient) 
of N, P, and K by dividing the reported grain yield by the kg of respective 
nutrient applied. Most farmers in Nepal maintain livestock and FYM 
application to soil is a standard practice in the study area. It is difficult to 
estimate nutrient additions from FYM since dry weight nutrient con
centrations of FYM vary widely as does the moisture content. For the 
purposes of our study, we treat FYM as part of the indigenous nutrient 
pool that has an intrinsic effect on fertilizer use efficiency and, hence, 
did not include FYM in the nutrient use efficiency calculations. Water 
productivity (kg paddy L− 1) was computed by dividing the amount of 
grain yield by the total amount of water input (irrigation +rainfall). For 
each farmer, from the total number of irrigation events and the average 
depth of irrigation (70 mm per irrigation event; validated from key 
informant) (Table S1) the amount of irrigation water applied was esti
mated according to the methodology used by Devkota et al. (2020). The 
daily rainfall estimates were obtained from the grided CHIRPS data 
(Funk et al., 2015). 

Yield-scaled GHG emissions (GHGI) (Eq. 1) expressed in CO2- 
equivalents was computed from a combination of direct (CH4, N2O) and 
indirect (energy used for fertilizer manufacture) sources. The CO2 
equivalent emissions from methane due to water management were 
computed using a formula described by IPCC (Devkota et al., 2019b; 
Devkota et al., 2020; Dong et al., 2006; Stuart et al., 2018). Direct GHG 
emissions were computed applying the formula provided by Cui et al. 
(2013) and the indirect emissions were computed using the methodol
ogy as described by Wu et al. (2014). The results were expressed in yield- 
scaled GHG emission intensity (GHGI; kg CO2 equivalent emissions t− 1 

grain) (Pittelkow et al., 2014; Sainju et al., 2014; Snyder et al., 2009). 
Details of all equations used for the GHGI calculation have been 
described in Supplementary Information (Appendix I). 

Greenhouse gas emisison intensity (GHGI)

=
Total CO2 equivalent emission (kg)

Paddy grain (t)
(1)  

2.2.4. Machine learning analytics 
Random Forest (RF) analysis develops an ensemble of regression or 

classification trees where individual trees are constructed from a 
random sub-sample of both predictor variables and observations (i.e. 
bagging) (Breiman, 2001; Breiman and Cutler, 2012). We employed the 
‘randomForest’ package in R Version 4.0.2 to identify yield de
terminants (based on relative importance, i.e. %IncMSE metric – see 
Breiman and Cutler, 2012) based on the survey and environmental 
characterization data described in section 2.2.3. Twenty-two yield pre
dictor variables were used, including: soil factors (organic carbon (SOC), 
pH, texture), inputs (seed, fertilizer, irrigation events, variety), crop 
establishment (seedling age, transplanting date), weed density, abiotic 
factors (crop-water stresses), and seasonal rainfall amount i.e., early- 
(Jun 1-Jul 15), mid- (Jul 16-Aug 30), and late- (Sep 1-Oct 15) rainfall 
(Table S2). We used gridded datasets to estimate environmental factors 
at each surveyed location, including CHIRPS for rainfall (Funk et al., 
2015) and WISE for soil attributes (Batjes, 2012). The RF model was 
trained by using 80% of the data with 20% reserved for independent 
model validation. To understand the geographic dependencies of yield 
predictors, we ran the RF model for the combined data from six districts 
and also for individual districts. Partial dependence plots (PDP) were 
constructed for assessing the relationship between crop yield (response 
variable) with the variations in single features (e.g. fertilizer rate, irri
gation event) (Friedman, 2001; Hastie et al., 2009). 

2.3. On-farm experiments 

The prevailing wisdom in Nepal suggests that poor seedling health, 
late transplanting, use of older cultivars, and a lack of integrative 
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agronomic management are all factors constraining rice yield and 
profitability. Sub-optimal nursery management (i.e., use of old seedling, 
no fertilizer, dense planting, poor water management) is common in the 
Nepal Terai (CSISA, 2017). Poor seedbed management can cause sig
nificant yield losses as has been reported by Balwinder-Singh et al. 
(2019), Lampayan et al. (2015), and Sarangi et al. (2015). Similarly, rice 
transplanting date is often delayed by the late onset of monsoon rains, a 
scenario that exacerbates the risk of late-season drought and significant 
yield losses (Balwinder-Singh et al., 2019; Cornish et al., 2015; Devkota 
et al., 2019b; Kumar and Ladha, 2011). Rice production and profitability 
can be increased through the use of high-yielding improved medium and 
short-duration hybrid varieties (Anwar et al., 2021). Further, integrative 
agronomic practices can offer transformative gains in yield, resource use 
efficiency, and profitability (Stuart et al., 2017, 2018). To validate these 
assumptions in the Nepal Terai, four different types of on-farm experi
ments were conducted: (1) healthy vs. farmers’ practice of raising 
seedlings, (2) timely vs. late transplanting, (3) hybrid vs. improved va
riety, and (4) good agronomic practices (GAP) vs. farmer crop man
agement practices (FP). Paired (treatment vs. control) on-farm trials 
were conducted on 503 farms in 30 different locations across eight Terai 
districts (Banke, Bardiya, Kailali, Kanchanpur, Nawalparasi, Rupandehi, 
Dang, and Kapilbastu) over a seven-year period (2011–2017) (Fig. S1). 
Details of these experiments and treatments have been presented in 
Table 1. Plots were selected for experiments based on farmers’ will
ingness to participate and also the availability of irrigation. 

In general, the experimental area is characterized by clay to sandy 
loam soil. The soil organic carbon content ranged from 0.6 to 1.28% 
(Walkley and Black, 1934), pH of 6.7–7.06, and a bulk density of 1.4 to 
1.5 g cm− 3 (Devkota et al., 2019b; LRMP, 1986). Unless noted (Table 1) 
and excepting experimental factors, all trials were conducted with 
established ‘good’ agronomic practices (so-called GAPs, i.e. improved 
variety, healthy seedlings, recommended fertilizer rate, timely weed 
management, supplemental irrigation as needed to avoid moisture 
stress). Rice was established by transplanting in puddled soil (PTR) in a 
grid pattern at 20 × 20 cm spacing. Individual plot sizes ranged from 
330 to 2000 m2. Training on GAP practices was provided to farmers 
before the start of the trials and periodic guidance and oversight given 
by research technicians over the course of the growing season. 

To estimate the grain yield from all on-farm experiments, the crop 
was manually harvested from three areas (diagonally dividing the 
experimental plots into three equal sections and selected harvest area 
from the center of each section) in each plot covering 4 m2 and 

converted to yield (kg ha− 1) at 13% moisture content. Both yield and 
gross margin were computed in the 4th (GAP vs. FP) experiment, 
considering total production cost and total income (straw + grain). The 
input cost (seed, fertilizer, labor, herbicides, and irrigation water) and 
output price (grain and straw) were derived from a local market survey 
for each district. 

2.4. Simulation of climatic potential yield 

Potential yield (i.e. non-limiting water and nutrients) was simulated 
with the ORYZA3 model for six western Terai districts (Kanchanpur, 
Kailali, Bardiya, Banke, Kapilbastu, Rupandehi), where landscape 
diagnostic household surveys were conducted. The rice variety used for 
potential yield simulation is a widely grown variety that is common in 
all Terai districts (‘Sabitri’, an improved inbred variety with 140 days 
maturity) and was seeded on June 15 from 1987 to 2017. For the model 
calibration (Fig. S4A), the genetic coefficients of variety ‘Sabitri’ were 
derived running the DRATE1 module of ORYZA3 using experimental 
data from three seeding dates (with three replication) experiments 
conducted in the National Wheat Research Program (NWRP), Rupan
dehi during 2012–2013. During the calibration process, the coefficients 
for development rate in the juvenile phase (DVRJ), photoperiod- 
sensitive phase (DVRI), panicle development phase (DVRP); and 
reproductive phase (DVRR) were computed (Table S3). The model was 
validated using independent data of the four N rates (0, 60, 120, 180 kg 
N ha− 1) experiment conducted under the PTR establishment method 
over two years (2012− 2013) in two locations, i.e., Rupandehi and 
Parwanipur (Fig. S4B). The model was deemed capable of estimating 
potential yield since the ratio between simulated and observed yield, R2, 
β and d-stat values were close to 1 (Li et al., 2015), α close to 0, RMSEa 
was similar to the standard error of the measured values, and RMSEn was 
similar to the coefficient of variation of the measured values. 

2.5. Data analysis 

The exploitable and the total YGs were derived for all six Terai dis
tricts. Based on yield from the survey, farmers were classified into three 
categories: top (mean of top 10%), middle (mean of middle 80%), and 
bottom (mean of bottom 10%). The exploitable YG was computed as the 
difference between the average yield of the top 10% of the yield dis
tribution (‘exploitable’ yield) and the population mean yield. Percent 
exploitable yield gap was computed by dividing this difference by the 

Table 1 
Detail crop management practices adopted in the on-farm experiments during 2011–2017 in eight Terai districts.  

Exp 
No. 

Experiment Total no. of 
paired 
experiments 

Districts Year of 
implementation 

Varieties Treatment Farmers practice (FP; control) 

I Rice nursery: 
(Healthy seedling 
vs. FP) 

48 Bardiya, Banke, 
Rupandehi 

2017 commercially 
grown varieties 

Seedling age less than 22 day; 
seed rate of 1 kg seed per 10 
m2 nursery area, 60:40:30 kg 
N:P:K fertilizer, and dry-raised 
bed nursery 

Seedling age 30–40 days; 1 kg 
seed in 20–30 m2 area; no 
chemical fertilizer, and flat wet- 
bed nursery in puddled field 

II Transplanting 
time: 
(Timely vs. late 
transplanting 

198 Kanchnapur, 
Kailali, Bardiya, 
Banke 

2011, 
2014–2016 

Commercially 
grown varieties 

Before 15 June in Kailali and 
Kanchanpur and before 15th 
July in other four districts 

After June 15 in Kailali and 
Kanchanpur and after 15 July in 
other four districts 

III Varieties: 
(Hybrid vs. 
improved) 

174 Kanchnapur, 
Kailali, Bardiya, 
Banke 

2015–2016 – Gorakhnath, Bioseed-786, 
Loknath, Shankar, Muskan, 
Bioseed-786, Arize-6444 

Radha-4; Samba Masuli, Sabitri 

IV Agronomic 
practices 
(Good agronomic 
practices; GAP vs. 
farmers practice; 
FP)1 

83 Kanchnapur, 
Kailali, Bardiya, 
Banke, 
Rupandehi 

2017 Commercially 
grown varieties 
(Arize-6444 and 
Radha-4) 

Healthy nursery; line 
transplanting at 20 × 20 cm 
spacing; fertilizer rates 
(100:30:30 kg N:P:K ha− 1); 
supplemental irrigation (when 
required); and timely weed 
management 

Conventional method of 
nursery raising and 
transplanting; fertilize rate 
(50–100 kg N:10–20 kg P: 0 kg 
K ha− 1; mostly rainfed; late 
weed management (after 50 
days after transplanting)  

1 Note: In experiment IV, there were two farmers practice. The compared here together is FP1. 
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average yield of top farmers (Devkota et al., 2019b; Stuart et al., 2016). 
Similarly, the total YG was derived from the difference between the 
ORYZA3 simulated potential yield and the population mean from the 
surveyed farmers (total YG). Gross margins were derived for all surveyed 
households and also for the GAP and FP (on-farm experiment IV). For 
the quantification of the performance of integrated GAP practices (on- 
farm experiment IV), two methods for defining farmer practices (FPs) 
were employed: FP1 (adjacent paired comparisons with researcher 
instructed and monitored and farmer operated plots (see detail in 
Table 1) and FP2 (area averages from survey data). Target indicator 
values for enhancing yield, gross margin, and sustainability were 
computed from the difference of average value of the top 10% (target) 
and the population mean (baseline) for positive indicators (higher value 
is better), and vice versa for the negative indicators e.g. GHGI, where 
reductions indicate progress (Devkota et al., 2020). 

Random forest regression model and PDPs (Breiman, 2001; Breiman 
and Cutler, 2012) were used to quantify the determinants (variable of 
relative importance) for yield variation in different spatial domains. PDP 
was used to quantify the marginal effect of individual inputs in yield 
(predicted outcome) variability. Yield responses to a few key categorical 
variables (e.g. water stress and soil type) are presented in boxplots. The 
upper and lower boundaries for NUE (100 and 30), PUE (300 and 100), 
KUE (300 and 50), respectively, were derived using the concept of 
nutrient output:input ratio to avoid scenarios of either nutrient loss (due 
to over-application) or nutrient mining (due to under-application) by 
adjusting those values as suggested by Devkota et al. (2019b), Dober
mann (2000), and EU Nitrogen Expert Panel (2015) to the context of 
Nepal. Apparent trade-offs among sustainability indicators were evalu
ated as a function of irrigation (with vs. without supplementary irriga
tion), N rate (application rate above and below the population mean; 
≥72 vs. <72 kg N ha− 1), variety (hybrid vs. improved variety), and land- 

holding size (rice area less and more than the population mean area or <
0.44 vs. ≥0.44 ha). To analyze treatment effects of series of paired 
datasets from four different types of on-farm experiments (Table 1), 
comparisons were made between experimental (treatments) vs. control 
(FP) using paired t-test in the statistical software R Version 4.0.2. 
Descriptive statistics (mean and SD) are presented wherever applicable. 
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Fig. 1. Variation in exploitable and total yield gaps (t ha− 1) in rice in Kanchanpur (A), Kailali (B), Bardiya (C), Banke (D), Kapilbastu (E), and Rupandehi (F) districts 
from the farmers reported largest plot yield data from survey data and simulation using ORYZA3. Black solid line inside the box the median and the red dotted line 
the mean. Figures in parenthesis are the yield gaps (first value exploitable yield gap; and the 2nd value the total yield gap). The total yield was derived from long- 
term (1987–2017) simulation. 

Table 2 
Characterization of rice production inputs in population mean and three yield 
categories from household survey data 2016. Values shown different categories 
are mean ± SD.  

Inputs used Population Bottom 
10% 

Middle 
80% 

Top 10% 

Number of household 
surveyed 

1052 117 809 126 

Rice area per household, 
ha 

0.80± 0.82 0.90±
1.04 

0.79±
0.80 

0.81±
0.72 

Nursery establishment 
date 

13 
June±11 

11 
June±9 

13 
June±11 

16 
June±11 

Harvesting date 30 Oct ± 14 30 Oct ±
11 

30 Oct ±
14 

5 Nov ±
15 

Seedling age, day 27.4 ± 6.1 27 ± 6.6 27 ± 6.1 27 ± 5.9 
Crop duration, day 140 ± 11.6 141 ±

10.4 
140 ±
11.5 

142 ±
13.1 

Elemental N, kg ha− 1 72 ± 38.4 66 ± 45.9 70 ± 36.7 93 ± 35.1 
Elemental P, kg ha− 1 21 ± 13.1 18 ± 15.2 20 ± 12.6 28 ± 12.3 
Elemental K, kg ha− 1 2.8 ± 9.4 1 ± 5.3 2 ± 9.0 7 ± 13.2 
Zinc Zn, kg ha− 1 0.8 ± 4.1 0 ± 2.0 1 ± 4.0 2 ± 5.7 
Farm yard manure 

(FYM), t ha− 1 
3.1 ± 8.5 2 ± 3.1 3 ± 9.5 3 ± 4.4 

No. of fertilizer applied 1.6 ± 1.8 1 ± 1.6 2 ± 1.8 2 ± 2.3 
No. of irrigation events 2 ± 1.2 2 ± 1.3 2 ± 1.2 2 ± 1.1  
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3. Results 

3.1. Spatial variation in yield gaps, inputs use, and sustainability 
indicators 

3.1.1. Rice yield gaps 
The YG varied across the districts (ranging 35–45% exploitable and 

43–62% total), with the mean exploitable YG of 2.57 t ha− 1 (40%) and 
the total YG of 4.85 t ha− 1 (55%). The highest exploitable YG was in 
Banke and the lowest in the Rupandehi district. Similarly, the highest 
total YG existed in Banke and the lowest in Kailali (Fig. 1). 

3.1.2. Input use and sustainability indicators across three yield gap category 
farmers 

Farmers at the lowest end of the yield distribution (<1.6 t ha− 1 yield) 
applied the lowest amount of N, P, K, Zn, and FYM fertilizers followed by 
middle (3.8 t ha− 1) and top (6.7 t ha− 1) terciles (Table 2; Table 3; Fig. 2). 
The bottom yield category farmers lost money on rice whereas the top 
tercile had a gross margin of US$ 877 contrasted to a population mean of 
US$ 257, indicating the scope to increase gross margin by US$ 570 ha− 1 

and yield by 2.8 t ha− 1 with the additional expense of US$ 85 (n.b. this 
approach does not account for the possibility that variations in rainfall 
contributed to favorable yield outcomes) (Table 3). With respect to 
sustainability indicators, the top-yielding tercile of rice fields had 43% 
lower GHGI with increased water productivity (66%) as well as 
increased efficiency of N and P fertilizers by 28% and 20%, respectively, 
compared to the population mean. 

Similarly, a significant variation in input use and the indicators 
across districts and the yield category exists (Fig. S5). In all districts, 

yield, gross margin, NUE, and PUE (inconsistent in KUE as very low 
number of farmers applied), and water productivity were highest with 
top followed by middle and the lowest (with negative gross margin) with 
the bottom. The bottom had the highest GHGI followed by the middle, 
and the top, respectively. 

3.1.3. Input use and sustainability indicators across Terai districts 
Across the surveyed districts, the mean rice planting time was June, 

and the harvesting time was October (Table S4). The mean farm size 
varied across the districts, ranging from 0.5 to 1.1 ha. Rice nursery 
establishment and transplanting dates varied and earliest (by 25 days) in 
Kanchanpur and Kailali (far-western region) and delayed/late in 
Kapilbastu. The 29% of a surveyed farmers were growing hybrid, 63% 
improved, and 8% traditional cultivars. Average application rates 
(based on all farmers) were 72 kg N ha− 1 (46 and 96 kg ha− 1 Q1 and Q3, 
respectively); 21 kg P ha− 1 (12 and 46 kg ha− 1 Q1 and Q3); and 3 kg K 
ha− 1. In the region, 99% of farmers applied only N, 93% of farmers 
applied N and P, and 13% of farmers applied N, P, and K as mineral 
fertilizers. Farmers in Rupandehi applied the highest amount of fertil
izers followed by Kapilbastu and the lowest in Banke district. Farmers in 
Kanchanpur applied the highest amount of FYM in their field. The 
average total water input during the rice season was 1456 mm with 113 
mm from irrigation (average frequency of application 2.1 times) and 
1343 mm from rainfall between 1st of June to 15th of October 
(Table S4). 

Fertilizer use efficiencies varied across districts with mean NUE 
values of 68, PUE of 238, and KUE of 393 kg grain kg− 1 elemental N, P, 
and K, respectively. The majority of farmers are likely mining soil 
nutrient stocks due to low application rates of N (<50 kg ha− 1; 33%), P 

Table 3 
Economic and environmental indicators of rice production in three yield categories and population from household survey data 2016. Values are mean ± SD.  

Input parameters Population mean 
(Baseline) 

Bottom 10% Middle 80% Top 10% 
(Target) 

Target value for 
improvement ¶ 

Economic indicators      
Total variable cost of production, US$ ha− 1 593 ± 82 532 ± 77 589 ± 75 678 ± 58 85 
Grain yield, t ha− 1 3.88 ± 1.53 1.64 ± 0.37 3.76 ± 0.96 6.70 ± 0.92 +2.82 
Gross margin, US$ ha− 1 307 ± 328 − 151 ± 112 284 ± 223 877 ± 218 +570 
Environmental indicators      
Water productivity, kg grain m− 3 water 0.271 ± 0.11 0.122 ±

0.033 
0.265 ±
0.078 

0.449 ± 0.09 +0.178 

Greenhouse gas emission intensity (GHGI), kg CO2 equivalent 
emission t− 1 grain 

1097 ± 519 2202 ± 675 1010 ± 253 624 ± 94 − 473 

Nitrogen use efficiency (NUE), kg grain kg− 1 elemental N 68 ± 49 36 ± 28 69 ± 46 87 ± 63 +19 
Phosphorus use efficiency (PUE), kg grain kg− 1 elemental P 238 ± 264 120 ± 87 247 ± 287 286 ± 176 +48 
Potassium use efficiency (KUE), kg grain kg− 1 elemental K 393 ± 466 172 ± 144 412 ± 525 391 ± 330 − 2 

¶ + indicate increment and – indicate reduction of each indicators for improving sustainability. 

Var. duration

Cost

No.Irrig.RF

N

P

K

FYM

Zinc S.Age

No. N Top.

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0
GrYld

Profit
TWP

GHGI

NUE

PUE
KUE

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

(A) (B)
Bottom 10% Middle 80% Top 10% Fig. 2. Input use (A) and sustainability indicators (B) among 

three yield gap category farmers. Data from six surveyed 
districts. Symbols and units for inputs used (A): Var. duration 
= growing duration of a variety (d), Cost = variable cost of 
production (US$ ha− 1), No.Irrig = No. of irrigation events 
(season− 1); RF = amount of rainfall (mm season− 1); N = ni
trogen fertilizer input (elemental N, kg ha− 1), P = phosphorus 
fertilizer input (elemental P, kg ha− 1), K = potassium fertilizer 
input (elemental K, kg ha− 1), FYM = farm yard manure (t 
ha− 1), Zinc = zinc fertilizer input (elemental P, kg ha− 1), S. 
Age = seedling age (days), No⋅N Top. = Times of N fertilizer 
topdressing. 
Symbols and units for indicators (B): GrYld = grain yield (t 
ha− 1), Profit = gross margin from rice (currency US$ ha− 1), 
TWP = total water productivity (kg grain L− 1 water (irrigation 
+ rainfall), GHGI = greenhouse gas emission intensity (kg 
CO2-equivalent t− 1 grain), NUE = nitrogen use efficiency (kg 
grain kg− 1 elemental N), PUE = phosphorus use efficiency (kg 
grain kg− 1 elemental P), KUE = potassium use efficiency (kg 
grain kg− 1 elemental K).   
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(<20 kg ha− 1; 52%), and K (<15 kg ha− 1; 92%) (Fig. 3), resulting in high 
partial factor productivities. On the other hand, a small minority of 
farmers appear to be over-applying fertilizers with high rates or low 
efficiencies of N (>150 kg ha− 1 or NUE <30; 18%), P (>30 kg ha− 1 or 
PUE < 100; 11%), and K (>30 kg ha− 1 or KUE < 50; 3%) infrequently 
observed. Mean water productivity was 0.27 kg grain m− 3 when irri
gation and rainfall were combined (total water productivity; 4428 L 
water kg− 1 grain), and GHGI (CO2 equivalent) was 1100 kg t− 1 grain 
(Table 4). 

3.1.4. Sustainability indicators as affected by supplemental irrigation, N 
rate, variety used, and land-holding (computed from household survey) 

Excluding other causal factors, application of two supplemental ir
rigations with the additional cost of US$ 88 ha− 1 increased yield (1.0 t 
ha− 1), gross margin (US$ 208), total water productivity (12%), and NUE 
(14%) while reducing GHGI by 23% (Fig. 4). Likewise, an increase in the 
N rate (calculated for the top and bottom halves of the distribution, i.e., 
≥72 kg ha− 1) increased the averaged production cost by US$ 70 ha− 1 (@ 
USD 1.01 kg− 1 elemental N) but increased yield (0.9 t ha− 1) and gross 
margin (US$ 141 ha− 1). The use of hybrid rice increased the production 
cost by US$ 47 ha− 1, but increased yield (0.7 t ha− 1), gross margin (US$ 
123 ha− 1), and water productivity (21%), while reducing GHGI by 7%. 
Our data also indicate that smallholder farmers (<0.44 ha rice area) 
have a higher cost of production (US$ 15 ha− 1) but have a higher yield 
(0.3 t ha− 1), gross margin (US$ 55 ha− 1), and water productivity by 
(11%), while decreasing GHG emission per kg grain (by 12%). The 
negative correlation (− 0.43, p = 0.10) between rice plot area and yield 
indicates that smallholder farmers are achieving higher yield with better 
sustainability indicators compared to farmers with larger plot size, 
perhaps highlighting the importance of skilled and adequate labor as an 
enabling factor for sustainable intensification. 

3.2. Determinants for rice yield gaps and their response to yield 

3.2.1. Variability in yield determinants across districts 
The RF model used to predict yield had a fairly high RMSE (1317 kg 

grain ha− 1) and somewhat modest R2 (36%) (Fig. S6). The survey data 
analyzed using the RF model showed that the number of irrigation 
events was the most influential primary determinant for explaining 
variation in rice yield followed, in descending order of importance, by 
the occurrence of late-season rainfall, soil type, the occurrence of early- 
season rainfall, farmer perception of water stress, soil pH, and applica
tion of N and P fertilizers (Fig. 5). Model results suggest a difference in 
the relative importance of the variables explaining current grain yield 
variation across the districts (Fig. 6). Seedling age and FYM application 
rate were the top two important variables explaining yield in Kan
chanpur. Similarly, N rate and SOC content in Kailali; the presence of 
water stress and soil type in Bardiya; irrigation intensity and the pres
ence of water stress in Banke; the presence of water stress and land type 
in Kapilbastu; and land area and irrigation intensity were the top two 
major variables explaining rice yield in Rupandehi. 

3.2.2. Response of grain yield to change in individual variables 
Partial dependency plots (PDPs) were used to characterize univariate 

yield responses to different driving factors. Positive responses for grain 
yield were characterized until the following thresholds were reached: 5 
irrigations, soil pH of 6.7, N rates of 110 kg ha− 1, P rate of 30–35 kg 
ha− 1, K rate of 20–30 kg ha− 1, transplanting date of July 1 to 20, and 
seedling age of 20–30 days (Fig. 7). The PDP for irrigation events sug
gests a 0.4 t ha− 1 yield gain with single supplementary irrigation, 
increasing to 1.1 t ha− 1 with diminishing returns for four supplementary 
irrigations (Fig. 7A). The PDP model suggests a positive response to the 
amount of late-season rainfall, where grain yield increased by 0.5 t ha− 1 

when rainfall amount during (2nd half of Sept) increased by 100 mm 
(from 200 mm to 300 mm) (Fig. 7B). Grain yield decreased by 0.25 t 
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Fig. 3. Nitrogen- (A), phosphorus- (B) and potassium- (C) use efficiency in six surveyed districts. Above the horizontal lines indicate the range of possible risk of soil 
mining and below the below horizontal line over-application. 

Table 4 
Economic and environmental indicators of rice production in six Terai districts from household survey data 2016. Values are mean ± SD.  

Input parameters Kanchanpur Kailali Bardiya Banke Kapilbastu Rupandehi 

Economic indicators 
Total variable cost of production, US$ ha− 1 579 ± 101 562 ± 61 602 ± 75 562 ± 67 620 ± 72 641 ± 75 
Grain yield, t ha− 1 3.65 ± 1.24 3.33 ± 1.26 3.40 ± 1.26 3.23 ± 1.33 4.97 ± 1.54 4.92 ± 1.51 
Gross margin, US$ ha− 1 267 ± 276 210 ± 274 186 ± 283 188 ± 279 533 ± 337 500 ± 329 
Environmental indicators 
Water productivity, kg grain m− 3 water 0.283 ± 0.109 0.208 ± 0.079 0.220 ± 0.088 0.287 ± 0.120 0.346 ± 0.108 0.289 ± 0.091 
Greenhouse gas emission intensity (GHGI), kg CO2 equivalent t− 1 yield 1053 ± 401 1187 ± 457 1203 ± 541 1243 ± 597 933 ± 586 930 ± 416 
Nitrogen use efficiency (NUE), kg grain kg− 1 elemental N 75 ± 43 69 ± 50 68 ± 57 72 ± 68 63 ± 35 57 ± 24 
Phosphorus use efficiency (PUE), kg grain kg− 1 elemental P 270 ± 176 236 ± 320 245 ± 196 289 ± 550 209 ± 126 187 ± 79 
Potassium use efficiency (KUE), kg grain kg− 1 elemental K 341 ± 224 510 ± 427 330 ± 229 743 ± 1146 322 ± 465 382 ± 427  
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ha− 1 when early-season rainfall increased by 100 mm (from 375 mm to 
475 mm) (Fig. 7C). With respect to response to fertilizers, the PDP model 
suggests that grain yield increases by 5.6 kg ha− 1 with each kg of N 
fertilizer application when N fertilizer rate increased from 50 to 100 kg 

N ha− 1 (Fig. 7D), by 4 kg ha− 1 with each kg of P fertilizer application 
when P fertilizer rate increased from 25 to 50 kg ha− 1 (Fig. 7E), and by 
10 kg ha− 1 with each kg increased in K fertilizer when K rate increased 
from 20 to 40 kg ha− 1 (Fig. 7F). For the other major yield determinants, 
the PDP model suggests positive responses to soil type (Fig. 8A), absence 
of water stress (Fig. 8B), soil pH, and transplanting time. Medium soil 
type out-yielded heavy and light-textured soils by 0.73 t ha− 1 (18%) and 
rice without farmer-reported water stress had yield higher by 52% (1.6 t 
ha− 1) than with water stress (Fig. 8). 

3.3. Response of agronomic practices for closing the yield and profit gaps 

Our results from multiple experiments indicated that experimental 
treatments evaluated (Table 1) have considerable scope to increase rice 
yields, thereby closing YGs (Fig. 9). For example, transplanting earlier 
than July 10 increased yield by 0.55 t ha− 1, the use of healthy seedlings 
increased yield by 0.85 t ha− 1, and planting of hybrid cultivars by 1.1 t 
ha− 1, all independent of other changes in crop management. Integrated 
‘good agronomic practices’ (GAP) increased yield by 48% (1.86 t ha− 1) 
and profitability by 94% (243 US$ ha− 1), where GAP had 5.74 t ha− 1 

yield and 500 US$ ha− 1 profitability compared to prevailing farmer 
practices (FP2), i.e., 3.88 t ha− 1 yield and 257 US$ ha− 1 profitability 
(Fig. 10). Also, to understand the trend, the comparison of FP1 and FP2 
showed yield by 14% (0.56 t ha− 1); and profitability by 50% (129 US$ 
ha− 1) were increased when farmers received training on GAP practices 
(FP1) compared to FP2. The paired compared 83 GAP vs. FP1 treatments 
showed 29% increment in yield (by 1.3 t ha− 1 yield and 113 US$ ha− 1 

profitability with the GAP in the Terai region of Nepal. 

4. Discussion 

Food insecurity and an increased focus on profitability have moti
vated renewed attention to defining and describing YGs in the context of 
multi-functional agriculture (Laborte et al., 2012; Lobell et al., 2009; 
van Ittersum et al., 2013), including environmental sustainability Dev
kota et al., 2019b, 2020. In our study in the Terai of Nepal, diagnostic 
surveys, machine learning, and crop simulation characterized exploit
able and total YGs of 2.58 and 4.85 t ha− 1, respectively. Rice YGs and 
their predictors vary across districts (Figs. 1, 5, and 6). In general, our 
analysis suggests synergies rather than trade-offs between closing YGs, 
increasing profitability, and reducing yield-scaled GHG emissions. 
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Fig. 4. Trade-offs in inputs (left) and indicators (right) between supplemental 
irrigation (with (≥1) irrigation) vs. without (no irrigation) (A), N application 
rate < 72 vs. ≥72 kg N ha− 1 (below and above average) (B), and rice area <
0.44 vs. ≥0.4 ha (C) in the western Terai region. Fig. 2 for detail explanation of 
figure labels. 
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districts) of Nepal. 
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4.1. Optimization of production inputs and improvement of economic and 
environmental indicators 

In the Nepal Terai, our results suggest that rice profitability is typi
cally negative until yields exceed 2.1 t ha− 1 (see Bottom 10% farmer in 
Table 3). Hence, rice production in this region is primarily for subsis
tence (average profitability US$ 1.4 ha− 1 day− 1 with 44% farmers 
producing <2 t ha− 1). As profitability is significantly correlated (r =
0.98) with yield, closing YG is the major entry point for increasing 
profitability and similar finding have been reported by Barbieri and 
Santos (2020). 

Rice yield is positively correlated (p < 0.001) with the amounts of 

NPK fertilizers applied (Table 2 and Table 3), as result that is also re
ported by Devkota et al. (2019b, 2020) elsewhere in Asia. Our study also 
suggests that a significant number of farmers are likely ‘mining’ (i.e. 
removing more than is replenished) soil nutrients because very low rates 
of fertilizer are applied, e.g. 33% of surveyed farmers apply <50 kg N 
ha− 1, 52% apply <20 kg P ha− 1, and 92% <15 kg K ha− 1 (Fig. 3). These 
studies clearly indicate that very high use efficiency is often associated 
with soil nutrient mining, where the optimal NUE, PUE, and KUE are 68, 
385, and 69 kg grain kg− 1 elemental N, P, and K respectively in rice 
(Dobermann, 2000). Low fertilizer application rates in Nepal are likely 
related to the high prices of informally traded fertilizers, delays in 
market availability, and investment aversion due to production risks (i. 
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Fig. 6. Random forest results on relative importance of different variables (determinants) in explaining productivity drivers vary across districts, i.e., Kanchanpur 
(A), Kailali (B), Bardiya (C), Banke (D), Kapilbastu (E), and Rupandehi (F) of Nepal. 
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Fig. 7. Partial dependence plots (PDP) for the top-ranked predictor variables for grain yield from variable importance measures of Random Forest model: no. of 
irrigation events (A), late-season rainfall (B), early-season rainfall (C), nitrogen rate (D), phosphorus, P rate (E), and potassium, K rate (F). 
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Fig. 8. Rice yield (t ha− 1) as affected by different soil types (A) and water stress levels (B). Black solid line median and the blue dotted line mean.  
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e. drought, flood). Our results suggest that the application of mineral 
fertilizer rates that exceed current average farmer practice (i.e. ≥ 72, ≥
21, and ≥ 3 kg ha− 1 elemental N, P, and K, respectively) will have wide- 
ranging benefits for yield, gross margin, and water productivity while 
reducing yield-scaled GHG emissions, especially given that current rates 
are well-below the response thresholds suggested by RF analysis of 
survey data through PDPs (see Fig. 7). Note that since very few farmers 
applied a high rate of fertilizer, the full range of fertilizer response 
values cannot be definitively defined through RF-based models derived 
from current survey data. 

Setting baseline and the target is essential for the improvement of 
sustainability indicators in each district and agro-ecological region. This 
study has proposed a baseline (the population mean) and the target (the 
value of top 10%) for seven economic and environmental indicators of 
rice production for the Terai region (Table 3). Application of targeted 
site-specific science-based recommendations (Figs. 7-10) including fer
tilizer and other crop management practices addressing the site-specific 
drivers (Fig. 6) is required to achieve sustainability goals over time. 
Also, these baseline and target values can inform planning processes for 
sustainable development (Bell and Morse, 2012). 

4.2. Determinants for grain yield variability 

In Nepal, current agronomic recommendations are extremely general 
and mostly address soil fertility management at the scale of broad 
geographic domains (i.e. fertilizer rate recommendations for irrigated 
and rainfed production in the Terai, hill, and mountain ecologies) (GoN, 
2019). Our analysis on YG demonstrates the limits of such an approach 
by highlighting how determinants vary across Terai districts (Fig. 6), 
suggesting the need for location-specific interventions. For example, 
increasing N, P, and K fertilizers rates can substantially improve pro
ductivity and sustainability indicators in the Kanchanpur District, 
whereas Banke, Bardiya, and Kapilbastu Districts are comparatively 
water-stressed and integrated water resources management must be 
given the highest priority. In aggregate, our analysis suggests that the 
major drivers of yield variation are mostly related to irrigation or water 
supply (number of irrigation events, amount of rainfall during late and 
early crop season, farmer-perceived crop water stress). Accordingly, 
72% of farmers (with the highest 88% in Banke and the lowest 41% in 
Rupandehi) reported the appearance of drought stress during the rice- 
growing season, a major factor constraining rice productivity. Also, 
23% of farmers do not have access to irrigation and, among those that do 
have access, more than two-thirds irrigate 2 times or less. Reasons for 
low irrigation intensity are likely diverse and may include unreliable 
water supply, insufficient credit and labor availability, a lack of 
perceived benefits from irrigation, or investment aversion in the hope 
that rains may eventually come. 

Total seasonal rainfall in the survey year of 2016 was 1382 mm, close 
to the long-term mean but unevenly distributed across the season. 
Availability of supplementary irrigation through groundwater and sur
face irrigation is increasing (CBS, 2019; Urfels and Mcdonald, 2020) and 
the Nepal government also has priority projects to increase irrigated 
area (Khanal et al., 2020), but clearly, there is more progress to be made. 
With an observed trend towards the early recession of monsoon rain 
(DHM, 2018), the use of shorter-duration rice cultivars could reduce 
production risks under water-limited conditions. Similarly, to 
adequately cope with early-season patterns of excess and deficit, early 
drought and submergence tolerant (Sub-1) cultivars are useful (Mackill 
et al., 2012; Singh et al., 2011). Decreased rice yield with more than 400 
mm rainfall during the early growing season (Fig. 7C) could be associ
ated with damage to young seedlings due to flooding. The positive 
correlation between grain yield and the amount of late-season rainfall 
indicated the scarcity of irrigation or late-season rainfall lowed yield 
mainly by delaying flowering, poor grain filling, and increasing spikelet 
sterility. Our analyses of survey data suggest that increased levels of 
supplemental irrigation (≥2 irrigation events) lead to higher yields with 
lower GHGI and yield stability across years. Under the current condition 
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of rainfall variability, the yield and profit penalty and risk that farmers 
have to bear without supplemental irrigation is significant (see Fig. 4). 
With the investment of US$ 88 ha− 1 in two irrigation, a more than two- 
fold increase in profitability was characterized in 2016 (Fig. 4). 

Soil pH is another major causal factor for the yield variability as 
determined by machine learning analytics. Soil acidity has been 
considered a major constraint in Terai region and the government has 
put a major effort in PMAMP Project for managing soil acidity (MoALD, 
2020). Together with soil acidity, the P rate tends to be the major yield 
predictor in a few districts, as P is commonly bound in insoluble forms in 
acidic soil (Ch’ng et al., 2014). Similarly, in Kapilbastu and Rupandehi, 
soil type is a major predictor of yield outcomes with medium-textured 
soil out-yielding heavier clay and sandy soils, a result consistent with 
others from the region (Prihar et al., 1985). 

4.3. Potential of agronomic innovations for closing rice yield gap 

In several rice-producing countries, the standards of ‘good agro
nomic practices’ (GAPs), have been formalized for example VietGAP and 
1M5R in Vietnam, ThaiGAP in Thailand, three control (3CT; reduction 
in N input, plant density, and pesticide) program in China, integrated 
crop management (ICM) in Indonesia, best-management practices 
(BMP) in Myanmar (Devkota et al., 2019b; Stuart et al., 2018). This 
study has aggregated evidence from a variety of analytical methods to 
identify geographically differentiated entry points for sustainably clos
ing the rice YG in Nepal. With various degrees of importance and 
geographic relevance, rice GAPs in Nepal rest on six component tech
nologies: healthy seedlings, use of high-yielding hybrid or modern rice 
varieties, timely planting, recommended fertilizer rates, supplemental 
irrigation, and timely weed management. 

5. Conclusions 

By deploying a mixed-methods approach that combines observa
tional studies with on-farm experiments and crop simulation, our anal
ysis demonstrates that transformative increases in grain yield and 
profitability are possible in the rice systems of Nepal without jeopard
izing key environmental sustainability indicators. Nevertheless, the 
significant biophysical, crop management, and socio-economic diversity 
in the agricultural systems of Nepal suggest that simply focusing on 
generalized packages of ‘good agronomic practices’ will not adequately 
support sustainable intensification. While formalization of GAPs as 
general guidance to farmers to support agricultural transformation, it is 
important to emphasize that productivity drivers vary by geography. By 
combing general principles for deriving yield gap, determining their 
determinants, and benchmarking baseline and target for the economic 
and environmental sustainability indicators, rice farmers in Nepal will 
be better placed to enhance yield, profitability, and environmental 
performance of their cropping systems. 
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