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A B S T R A C T   

The increasing availability of complex, geo-referenced on-farm data demands analytical frameworks that can 
guide crop management recommendations. Recent developments in interpretable machine learning techniques 
offer opportunities to use these methods in agronomic studies. Our objectives were two-fold: (1) to assess the 
performance of different machine learning methods to explain on-farm wheat yield variability in the North
western Indo-Gangetic Plains of India, and (2) to identify the most important drivers and interactions explaining 
wheat yield variability. A suite of fine-tuned machine learning models (ridge and lasso regression, classification 
and regression trees, k-nearest neighbor, support vector machines, gradient boosting, extreme gradient boosting, 
and random forest) were statistically compared using the R2, root mean square error (RMSE), and mean absolute 
error (MAE). The best performing model was again fine-tuned using a grid search approach for the bias-variance 
trade-off. Three post-hoc model agnostic techniques were used to interpret the best performing model: variable 
importance (a variable was considered “important” if shuffling its values increased or decreased the model error 
considerably), interaction strength (based on Friedman’s H-statistic), and two-way interaction (i.e., how much of 
the total variability in wheat yield was explained by a particular two-way interaction). Model outputs were 
compared against empirical data to contextualize results and provide a blueprint for future analysis in other 
production systems. Tree-based and decision boundary-based methods outperformed regression-based methods 
in explaining wheat yield variability. Random forest was the best performing method in terms of goodness-of-fit 
and model precision and accuracy with RMSE, MAE, and R2 ranging between 367 and 470 kg ha− 1, 276–345 kg 
ha− 1, and 0.44–0.63, respectively. Random forest was then used for selection of important variables and in
teractions. The most important management variables explaining wheat yield variability were nitrogen appli
cation rate and crop residue management, whereas the average of monthly cumulative solar radiation during 
February and March (coinciding with reproductive phase of wheat) was the most important biophysical variable. 
The effect size of these variables on wheat yield ranged between 227 kg ha− 1 for nitrogen application rate to 372 
kg ha− 1 for cumulative solar radiation during February and March. The effect of important interactions on wheat 
yield was detected in the data namely the interaction between crop residue management and disease manage
ment and, nitrogen application rate and seeding rate. For instance, farmers’ fields with moderate disease inci
dence yielded 750 kg ha− 1 less when crop residues were removed than when crop residues were retained. 
Similarly, wheat yield response to residue retention was higher under low seed and N application rates. As an 
inductive research approach, the appropriate application of interpretable machine learning methods can be used 
to extract agronomically actionable information from large-scale farmer field data.  
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1. Introduction 

Interest in the application of machine learning in agronomic science 
is increasing in tandem with the growing availability of geo-referenced 
farmer field data and spatially explicit environmental data in a diversity 
of cropping systems (Jaenisch et al., 2021; Tseng et al., 2021). Such 
large datasets provide new opportunities to apply inductive research 
approaches examining the relationships between crop management and 
environmental conditions with crop yield, and may be an appropriate 
and cost-effective way to conduct agronomic research across large scales 
(Silva et al., 2020; Rattalino Edreira et al., 2017). Importantly, many of 
these approaches differ from those associated with hypothesis-driven, 
manipulative experimentation, and deductive research (de Mauro 
et al., 2016). Despite the wealth of studies identifying important vari
ables governing crop yield variability (e.g., Correndo et al., 2021; Park 
et al., 2018), studies that employ large-scale observations of farmers’ 
management practices to assess how these affect crop yield directly or in 
interaction with other practices are less common (e.g., Tseng et al., 
2021; Devkota and Yigezu, 2020; Di Mauro et al., 2018). 

Machine learning lies at the intersection of computer science and 
statistics, and has been used to unravel patterns in large datasets that are 
challenging to analyze with more conventional statistical approaches 
(Tolle et al., 2011). In agriculture, machine learning is being increas
ingly used to predict crop yield, although the research community re
mains divided on which methods are most appropriate given different 
data types and contexts (Ransom et al., 2019; Khaki and Wang, 2019; 
Van Klompenburg et al., 2020; Shook et al., 2021). Four different types 
of machine learning methods can be identified based on their inter
pretability and level of complexity: (i) regression-based methods (e.g., 
linear, ridge, and lasso regression), (ii) single tree- or multiple tree-based 
boosted methods (e.g., classification and regression trees, gradient 
boosting, extreme gradient boosting, and random forest), (iii) 
proximity-based K-nearest neighborhood (KNN), and (iv) decision 
boundary-based support vector regression (James et al., 2013). A 
method is deemed interpretable if the estimated model coefficients 
represent the effect size of the independent variables on the dependent 
variable (such as in regression-based methods; James et al., 2013). 
Furthermore, a method is deemed complex if it has many 
hyper-parameters that need to be tuned while fitting the model as 
compared to simpler models for which coefficients can be estimated 
using simple loss functions and regularization and the coefficients can 
not be interpretd directly for these models (James et al., 2013). This 
study provides an overview of the different machine learning methods 
available to explain on-farm yield variability and illustrates the useful
ness of interpretable machine learning techniques for agronomic studies 
using farmer field data for irrigated wheat in the Northwestern 
Indo-Gangetic Plains (IGP) of India. 

The rice-wheat cropping system is the predominant cropping system 
in the Northwestern IGP and is the key supplier of calories for food se
curity in India, where the spring wheat is cultivated after harvest of a 
rainy season rice crop (Bhatt et al., 2021; Nayak et al., 2022). Spring 
wheat is generally cultivated during the winter season, between 
mid-November and mid-April. Wheat yield in this cropping system is 
affected by a combination of climatic conditions during the growing 
season, soil properties resulting from previous management, and crop 
management practices adopted by farmers (Singh et al., 2014; Kumar 
et al., 2019). For instance, in rice-wheat cropping systems in the region, 
rice fields are wet-tilled in a process termed puddling, and kept flooded 
to ensure crop growth and suppress weeds. However, intensive tillage 
and puddling can also lead to poor soil structure, sub-optimal perme
ability in subsurface soil layers, poor soil aeration, and soil compaction, 
which in turn can adversely affect the growth and yield of the subse
quent wheat crop (Chauhan et al., 2012; Singh et al., 2014; Gathala 
et al., 2011). Herbicide resistant strains of Phalaris minor, deficiencies of 
micronutrients, and low use efficiency of nitrogen fertilizers are also 
important reducing and limiting factors for wheat productivity in the 

region (Bhatt et al., 2021). 
Machine learning has been used to describe crop yield variability 

(Shendryk et al., 2021; Cao et al., 2021), but the model interpretation 
has been limited to the identification of important variables (Correndo 
et al., 2021; Krupnik et al., 2015). There are also few studies comparing 
the performance of different statistical methods (e.g., Mourtzinis et al., 
2018). Classification and regression trees have been the preferred 
method to derive agronomic recommendations given its intuitive out
comes (Di Mauro et al., 2018; Krupnik et al., 2015). The advent of 
model-agnostic interpretable techniques makes it possible to identify the 
local and global effect of important variables, as well as their in
teractions on crop yield using different machine learning methods. The 
objectives of this study were: (1) to assess the performance of machine 
learning methods in explaining crop yield variability, (2) to identify the 
important variables and interactions driving wheat yield variability in 
the Northwestern IGP of India, and (3) to visualize the effect of impor
tant variables on wheat yield to generate evidence-based agronomic 
recommendations. This study consequently aims to illustrate how ma
chine learning can be used as an inductive method in agronomy to un
ravel the key drivers of crop yield variability using a wealth of 
biophysical and management data from observations made across 
thousands of farmers’ fields, as an alternative and/or complement to 
more traditional, inductive-based manipulative experimentation. 

2. Material and methods 

2.1. On-farm data for wheat production in the Northwestern IGP of India 

A field survey was conducted during two consecutive wheat growing 
seasons, 2019–2020 and 2020–2021, in the three districts of Haryana 
(Ambala, Karnal, and Kurukshetra) and four districts of Punjab (Fate
hgarh Sahib, Ludhiana, Kapurthala, and Patiala). Further details about 
the climatic and soil conditions across the states of Haryana and Punjab 
are provided in Nayak et al. (2022). The blocks and villages within the 
districts were purposefully selected to represent varying levels of 
extension outreach and technology adoption; further the farmers with in 
each village were randomly selected for the field survey. The surveyed 
fields were geo-referenced so that associated climatic and soil data could 
be retrieved from secondary sources. Farmers were surveyed during 
wheat harvest using a structured questionnaire coded on the Open-Data 
Kit (ODK) platform and responses were monitored real-time using a 
visualization dashboard. The information requested per field included: 
(i) variety grown, (ii) tillage practices and crop establishment method, 
(iii) water and nutrient management practices, (iv) pest, disease, and 
weed severity and control, and (v) source of inputs, labor requirements, 
crop production and area, and other socioeconomic characteristics 
(Supplementary information 1). The criteria to select biophysical and 
management variables was as follows: (a) variables must be agronomi
cally meaningful to explain crop yield variability, (b) the distribution of 
the data for each variable must be suitable for analysis, and (c) variables 
can be interpreted to the farmers and extension agents. The farmer re
ported crop production data were verified with measured yield data 
obtained through crop-cut in a 2 × 2 m2 quadrant in about 25% of the 
surveyed fields. A linear regression was fitted between the self-reported 
yield and the crop cut yield (Supplementary Fig. 1), which was then used 
to correct the self-reported yield for the fields where crop cuts were not 
conducted. The univariate outlier detection was done based on the 
analysis of boxplot and for bivariate outliers screening robust Mahala
nobis distance complemented with expert knowledge was used, as 
described in Nayak et al. (2022). The total sample size across the two 
growing seasons was 6181 field-year combinations, from which 42 
field-year combinations were identified as outliers and thus excluded in 
further analyses. 

The weather and soil data were obtained from secondary sources 
using the GPS coordinates of each surveyed field. Weather data were 
retrieved from the ERA5 hourly re-analyzed database (Sabater, 2019) 
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and included solar radiation (kW m− 2) and minimum and maximum 
temperatures (⸰C). The growing season was split into two periods, 
December to January and February to March, as they approximately 
coincide with vegetative and reproductive phase of wheat, respectively 
(Fischer et al., 2022). Soil textural data were retrieved from the Inter
national Soil Reference and Information Centre (ISRIC) database at a 
resolution of 250 m (Hengl et al., 2017). Soil texture classes were 
derived from the particle size distribution data from ISRIC using the 
USDA textural triangle classification. 

2.2. Analytical approach to explain crop yield variability 

The analytical framework used in this study encompassed four steps 
(Fig. 1). First, machine learning models were fine-tuned using random 
search approach and fitted to the data comprising relevant agronomic 
and biophysical variables using a 10-fold cross-validation scheme with 
data resampling. Second, the performance of the fitted models was 
assessed using statistical indices, which were used to identify the model 
explaining yield variability best. Third, the best performing model was 
fine-tuned using a grid search approach and recursive feature 

elimination to check for the bias-variance trade-off and to refine the 
final variables to be used in the further analysis. Lastly, the refined 
model was used to explain yield variability based on variable impor
tance, quantification of effect sizes, and analysis of the interaction 
strength between the variables. The analytical steps are explained in 
greater detail in following sub-sections. 

2.2.1. Formulation of machine learning models 
Machine learning methods were chosen based on their working 

principle, level of complexity, and ease of interpretability (Table 1). 
Regression-based methods are parametric, and their coefficients are 
obtained through ordinary least-squares. Conversely, other methods like 
classification and regression trees, k-nearest neighbors, and support 
vector machines are non-parametric (James et al., 2013). Tree-based 
methods such as classification and regression tree, random forest, and 
gradient boosting rely on decision trees, and a series of if-then rules to 
arrive at a particular prediction or classification (Breiman, 2001a). 
Distance-based methods, like K-nearest mean, find the K-nearest 
neighbors in the feature space and provide predictions based on those K 
data point’s outcomes (e.g., Cover and Hart, 1967). Decision 
boundary-based methods create a decision boundary with data pro
jected in a higher dimension (suppose there are three variables, then 
their values will be projected in a 3-dimensional space) to derive a 
particular prediction. Regression-based methods are less complex and 
have easier and direct interpretation compared to tree-based or distance 
and decision boundary-based methods (Hastie et al., 2009). 

Two regression-based methods were considered in the analysis to 
capture a linear relationship between the dependent variable and the 
independent variables: (1) ridge regression (ridge) and (2) lasso regres
sion (lasso). Ridge and lasso regressions are a modification of linear 
regression. In ridge regression, the estimated coefficients shrink towards 
zero for the least important variables, thus reducing model complexity 
and multi-collinearity (Hoerl and Kennard, 1970). Lasso regression is an 
alternative to ridge regression in which regularization combined with a 
minimizing cost function eliminate variables with very small effect sizes, 
for which the coefficient is set to zero, hence reducing model overfitting 
(Tibshirani, 1996). 

Four tree-based methods were included in the analysis namely 
classification and regression tree (rpart), gradient boosting (gbm), 
extreme gradient boosting (xgbTree), and random forest (rf). Classifica
tion and regression tree is a single tree-based model with simple inter
pretation but with unstable and poor predictive performance (Breiman 
et al., 2017). Random forest (Breiman, 2001), gradient boosting, and 
extreme gradient boosting are more complex than classification and 
regression trees and work based on bootstrap aggregation (bagging) 
technique. Gradient boosting is a technique where weak learners (data 
points where the prediction errors are greatest) are converted into 
strong learners, i.e., a higher weightage is given to data points where the 
prediction errors are greatest (Friedman, 2001). The loss function is a 
measure of how the predicted values differ from the observed values. 

Fig. 1. Analytical framework for using interpretable machine learning models 
in agronomic studies. The reader is referred to the main text for further 
explanation of each step. RFE = recursive feature elimination. 

Table 1 
Characterization of the machine learning methods used in this study based on their background algorithm and levels of complexity and interpretability. Modified by 
authors from James et al. (2013).  

Model Abbreviation Type of the model Level of complexity† Level of interpretability‡

Classification and regression tree rpart Single tree Moderate High 
Ridge regression ridge Regularized linear regression Low High 
Lasso regression lasso Regularized linear regression Low High 
Generalized linear model glm Linear regression with probability distribution and link function Moderate High 
Gradient boosting gbm Sequentially constructed tree High Low 
Extreme gradient boosting xgbTree Regularized gbm High Low 
Support vector machine svmRadial Decision boundary High Low 
K-nearest neighbor kNN Distance Moderate Moderate 
Random forest rf Multiple tree High Low 

† A model is deemed complex if it has many hyper-parameters that require fine-tuning during model fitting. 
‡ A model is deemed interpretable if the estimated parameters represent the effect size of independent variables on the dependent variable. 
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Extreme gradient boosting works similarly to gradient boosting, except 
that it uses an advanced regularization to improve model generalization 
(i.e., to get a good performance in unseen test data; Chen and Guestrin, 
2016). Random forest is also based on decision trees, but it differs from 
gradient boosting as it combines the results of individual decision trees 
using the mean or the mode to arrive at a particular prediction. More
over, individual trees are built independently in random forest, whereas 
trees are built sequentially, in a forward stage manner improving 
shortcomings of existing weak learners, in gradient boosting (Breiman, 
2001; Probst et al., 2019). 

The other considered method was the K-nearest neighbor, which 
works based on the similarity between events in the feature space (Cover 
and Hart, 1967). The last method considered was support vector ma
chine (svmRadial) which uses radial kernel functions to project nonlinear 
data into a higher dimension space to capture complex relationships 
between variables (Cortes and Vapnik, 1995). 

2.2.2. Variable construction and feature engineering 
Data from both growing seasons were pooled for the common vari

ables because mean wheat yield and their distribution during both 
seasons was similar, resulting in a total of 6139 field-year combinations 
with complete data for the selected variables (Table 2). The variables 
were selected based on their agronomic relevance for crop production, 

their distribution within the surveyed fields, and their relevance for 
farmers and extension workers. Fourteen continuous variables were 
used in the analysis: six climatic variables and eight variables capturing 
management practices in farmers’ fields. Similarly, ten categorical 
variables were used to describe wheat yield variability (Table 2). Vari
ables composed of mostly unique values (i.e., more than 95% of the 
observations reporting the same value) were not considered in the 
analysis (Kuhn and Johnson, 2019). Examples of such variables included 
previous crop (mostly rice), use of farmyard manure (mostly no), and 
application rates of potassium (K) and micronutrients. 

Feature engineering entails the harmonization of categorical vari
ables to ensure a nearly similar number of observations for the different 
levels of each categorical variable. This was done for the following 
variables: tillage intensity, number of irrigations, residue level, and 
lodging category (Table 2). For example, there were only 158 fields 
where more than five irrigations were applied (the frequency of fields 
with more than five irrigations was small as compared to the frequency 
of fields with other irrigation numbers), and these were grouped 
together with fields reporting four irrigations. These categorical vari
ables were one hot encoded with either zero or one using the dummyVars 
() function in R. 

Table 2 
Descriptive statistics of the variables used for model comparison and further for variable screening. Categorical variables were binary coded in the analysis. Fifteen 
different wheat varieties not reported in this table were used in the analysis. DAS = Days after sowing.  

Continuous variables Level /Unit Mean Standard deviation 

Wheat grain yield kg ha− 1 4910 616 
Sowing date Julian days 312 6 
Seeding rate kg ha− 1 112.5 10.7 
Total N applied kg N ha− 1 161 20 
Total P2O5 fertilizer applied kg P2O5 ha− 1 64 11 
Date of 1st urea top dress DAS 26 3 
Date of 2nd urea top dress DAS 39 4 
Days between rice harvest and wheat sowing Days 17.9 8.4 
Average maximum temperature during 

December and January (Vegetative stage) 

◦C 18.8 0.9 

Average minimum temperature during December and January (Vegetative stage) ◦C 7.5 0.5 
Average maximum temperature during February and March (Reproductive stage) ◦C 25.8 1.8 
Average minimum temperature during February and March (Reproductive stage) ◦C 12.3 0.9 
Monthly average of cumulative radiation during December and January (Vegetative stage) kW m− 2 61.1 3.6 
Monthly average of cumulative radiation during February and March (reproductive stage) kW m− 2 92.0 3.7 
Crop duration Days 161 8  

Categorical variables Types % of data in each category 

Tillage intensity in rice Less than four 26.5  
Five 31.3  
Six 22.0  
Equal or more than seven 20.2 

Tillage intensity in wheat Intensive tillage 31.8  
Moderate tillage 29.2  
Zero or minimum tillage 39.0 

Retention of level of rice residues No retention 41.5  
Moderate retention 26.6  
Complete retention 31.9 

Irrigation number in wheat Equal or less than two 34.0  
Three 48.2  
Equal or more than four 17.8 

Lodging event No 60.2  
Yes 39.8 

Weed infestation Low 33.1  
Medium 66.9 

Insect incidence No 38.2  
Low 26.4  
Medium 35.2 

Disease incidence No 33.9  
Low 29.4  
Medium 36.7 

Soil texture Clay 11.2  
Clay loam 76.0  
Loam 12.8  
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2.2.3. Cross-validation with data resampling 
Training and test datasets were created by partitioning the pooled 

data considering a 70:30 ratio, i.e., 70% of the field-year combinations 
were used as training dataset and the remaining 30% of the field-year 
combinations were used as independent test dataset. The partition of 
the data was done in such a way that the yield distribution was similar in 
both training and test datasets. This was accomplished with a stratified 
random sampling from the groups created using the default percentile 
values from createDataPartition() function of the caret R package. The 
machine learning methods (Table 1) were applied on the training 
dataset using a 10-fold cross-validation scheme with data resampling to 
assess the bias-variance trade-off, i.e., model overfitting or underfitting. 
Cross-validation iteratively creates a sub-sample from the training 
dataset for model fitting and evaluates the fitted model on the remaining 
observations of the training dataset. In this way each and every part of 
the data acts as both training and test dataset. This scheme was repeated 
three times using the trainControl() function of the caret R package 
(Probst et al., 2019). All the 51 variables (Table 2, with categorical 
variables expressed as dummy variables) were used for model devel
opment and comparison. The random search approach was used to 
fine-tune hyper-parameters (see Supplementary Table 1), before com
parison of the different machine learning models. The caretList() func
tion from the caretEnsemble R package (Deane-Mayer and Knowles, 
2019) was used for comparing the models and for selecting the best 
model for further analyses. The models were compared using statistical 

indices (Section 2.2.4) on the cross-validated sample. 

2.2.4. Selected model to explain crop yield variability 
Three statistical indices were calculated for each 10-fold cross- 

validation run and used to assess the goodness-of-fit, accuracy, and 
precision of each model. Model accuracy refers to the ability of the 
model to correctly predict crop yield in the surveyed fields whereas 
model precision refers to the error associated with those predictions. 
Goodness-of-fit was assessed using the coefficient of determination (R2), 
model accuracy was assessed using the root mean square error (RMSE), 
and model precision was assessed using the mean absolute error (MAE), 
which were calculated as follows: 

R2 (%) =

( ∑n
i (Oi − Omean)(Pi − Pmean)

)2

∑n
i (Oi − Omean)2

×
∑n

i (Pi − Pmean)2  

RMSE (kg

/

ha) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Oi − Pi)
2

n

√

MAE (kg
/

ha) =
∑n

i=1|Oi − Pi|

n  

where Oi is the observed yield in field-year i, Pi is the predicted yield by 
each individual model in field-year i, Omean is the mean of observed 
yields across all field-year combinations, and Pmean is the mean of 

Fig. 2. Comparison of the fitted machine learning models to explain wheat yield variability in the Northwestern Indo-Gangetic Plains of India in terms of (A) 
coefficient of determination (R2), (B) root mean squared error (RMSE), and (C) mean absolute error (MAE). Panel (D) shows the RMSE relative to the number of 
variables used for model fitting. The full name of each model, and respective abbreviation is provided in Table 2. 
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predicted yields by ML model across field-year combinations. R2 values 
range between 0% and 100% and the greater the value the greater the 
variability in the data explained by the model. RMSE and MAE, both are 
expressed in kg ha− 1, are always greater than zero and the smaller the 
value the better the accuracy and precision of the model, respectively. 
The model explaining yield variability best, as indicated by the R2, 
RMSE, and MAE, was selected for further analysis. 

2.2.5. Variable selection and fine-tuning of selected method 
The model explaining yield variability best, namely random forest 

(Fig. 2), was fine-tuned in two steps. The first step involved the reduc
tion of the number of features, to avoid model overfitting (by reducing 
the noise) using the recursive feature elimination technique with 10-fold 
cross-validation. This was implemented using the rfFuncs() function 
within the rfe control framework of the caret R package (Probst et al., 
2019). Recursive feature elimination implies fitting the model to the 
training dataset to establish the relationship between variable number 
and model performance based on the RMSE or other statistical indices. 
This was done using a backward elimination technique in which all 
variables were used to develop the model first, and least important 
variables that do not contribute in improving model accuracy were 
eliminated subsequently. 

The second step involved fitting the model with the selected feature 
variables on the training dataset and evaluating it in the independent 
test dataset. The fitted model on reduced feature space was fine-tuned 
using a grid-search approach for the model specific hyper-parameters: 
(i) the number of variables randomly sampled as candidates at each 
split (mtry between 10 and 20), (ii) the minimum number of observa
tions allowed in each of terminal node (nodesize ranging between 15 and 
210 at an interval of 15) controlling the depth of the tree, and (iii) 
number of trees to be built (ntree with a value of 500, 1000 or 1500). A 
grid search approach was implemented for unique combinations of 
nodesize and ntree and for different levels of mtry using the train() and 
trainControl() functions of the caret R package. For each combination of 
nodesize and ntree values, the best mtry value was selected based on the 
greatest R2 and lowest RMSE. After this, model performance in the 
training and cross-validation datasets were compared for all combina
tions of nodesize and ntree hyper-parameters. Hyper-parameters were 
chosen to reduce model overfitting which was achieved when the dif
ference between the R2 of training and cross-validation datasets was less 
than 10%. 

The performance of the fine-tuned model was evaluated with Lin’s 
concordance correlation coefficient and with a linear regression be
tween the observed and predicted yield for the pooled data and for the 
training and test datasets. Data were visualized using a 1:1 plot and the 
Lin’s concordance correlation coefficient along with R2 was used to 
quantify the goodness-of-fit of the fitted models. 

2.3. Model application and interpretation for wheat in the NW-IGP 

Traditionally, multi-variate linear regression approaches have been 
used to derive insights from large and complex datasets based on the 
relationship between independent and dependent variables (e.g., Silva 
et al., 2020). Complex machine learning models can also be interpreted 
using model agnostic interpretation techniques related to variable 
importance, effect size, and interaction strength. The model fitted to the 
pooled dataset using the hyper-parameters from the fine-tuned model on 
training dataset was interpreted vis-à-vis empirical relations derived 
from the farmer field data for irrigated wheat in the Northwestern IGP of 
India. 

2.3.1. Estimation of variable importance 
A variable is considered “important” if shuffling its values increases 

or decreases the model error considerably (Fisher et al., 2019), because 
in this case the model relied on that variable for the prediction. The 
estimation of variable importance entails four steps: (1) computation of 

model error in the original model, (2) re-estimation of model error after 
reshuffling the values of a particular variable (permuted model), (3) 
calculation of variable importance as the ratio between the model error 
in the permuted model and the model error in the original model, and 
(4) ranking of the variables based on descending variable importance. 
Variable importance was estimated with the importance() function of the 
iml R package (Molnar et al., 2018). The two most important variables 
were used for detailed quantification of their effect size on wheat yield. 

2.3.2. Quantification of effect sizes 
Effect sizes were quantified using partial dependency plots (PDP), 

accumulated local effect (ALE) plots, and using quantile regressions 
fitted to the empirical data. PDP are commonly used to establish the 
relationship between important explanatory variables and the response 
variable (Tseng et al., 2021; Devkota and Yigezu, 2020), but they require 
variables to be independent and tend to over interpret the model in the 
range of the distribution with less or no data or if the features are 
correlated. Conversely, ALEs are unbiased even in the presence of a 
correlated feature space (Molnar et al., 2020), and hence overcome the 
limitations of PDP. In ALE plots, the response variable is centered at 
zero, i.e., the response value for each level of the independent variable in 
the ALE plot is the difference over to the mean outcome (here mean 
wheat yield), which makes model interpretation easier. PDP and ALE 
plots were constructed with the iml R package (Molnar et al., 2018). 
Model interpretation techniques were assessed vis-à-vis empirical re
lationships fitted to the farmer field data using quantile regressions for 
continuous variables. Non-linear quantile regressions of the form y = a 
+ bx + c0.99x were fitted to the 90th quantile of the empirical data 
using the statsmodels library in Python. 

2.3.3. Interaction strength between variables 
Two measures of interaction strength were assessed namely an 

overall interaction strength and a two-way interaction strength. The 
overall interaction strength is based on Friedman’s H-statistic and was 
used to select the most important variables interacting with other vari
ables (Friedman and Popescu, 2008). The estimation of the overall 
interaction strength comprises four steps: (1) prediction of the outcome 
with the original model for each variable and estimation of its variance, 
(2) estimation of the partial dependence from the model with the vari
able and without the variable, (3) assessment of whether each variable is 
interacting with other variables by obtaining the sum of the difference of 
variance between the model fitted in step 1 and the partial dependence 
from the model with the variable and without the variable fitted in step 
2, and (4) calculation of the overall interaction strength as the ratio 
between the differences of the variance calculated in step 3 and the 
variance of the model fitted in step 1. The overall interaction strength 
ranges between zero and one, and interactions are deemed important if 
the overall interaction strength is greater than 0.1-0.15. 

The two-way interaction strength was further studied for the top 
three management variables with greatest overall interaction strength. 
Two-way interactions were determined with the following steps: (1) 
estimation of the partial dependence for two variables, i and j, say pd(ij); 
(2) computation of the partial dependence function for each variable, i. 
e., pd(i) and pd(j); (3) computation of the two-way interaction strength 
as the ratio of the difference in variance between the interaction (pd(ij)) 
and the individual partial dependencies (pd(i) and pd(j)) and the vari
ance of the interaction partial dependence. The overall interaction 
strength and the two-way interaction strength were estimated using the 
iml R package (Molnar et al., 2018). 

The three most important two-way interactions for each of the three 
management variables with greatest overall interaction strength were 
studied with descriptive scatterplots for continuous variables or faceted 
boxplots for categorical variables. Linear regressions were fitted to 
different levels of the independent variable to determine the two-way 
interaction empirically. 
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3. Results 

3.1. Important machine learning models to explain wheat yield variability 

The performance of eight machine learning models to explain wheat 
yield variability was evaluated using R2, RMSE, and MAE values after 
model fine-tuning using random search approach (Fig. 2A-C). The kNN 
method performed worst, with R2 ranging between 0.10 and 0.30 (mean 
equal to 0.20), RMSE ranging between 513 and 580 kg ha− 1 

(550 kg ha− 1), and MAE ranging between 396 and 445 kg ha− 1 

(420 kg ha− 1). The two regression-based models (ridge and lasso) and 
gradient boosting model (gbm) performed equally well and had slightly 
better performance than kNN with mean R2 of 0.38, , mean RMSE of 
499 kg ha− 1, and mean MAE of 378 kg ha− 1across the three models The 
single tree-based classification and regression tree (rpart) performed 
better than the linear regression-based models. The multi-tree-based 
bagged models (xbgTree) and svmRadial models performed better than 
linear regression, rpart, and gbm models with a mean R2 of 0.47 and 0.50, 
respectively. Finally, the random forest (rf) model performed best 
considering all the statistical indices, with the R2 ranging between 0.44 
and 0.64 (mean equal to 0.55), the RMSE ranging between 367 and 
470 kg ha− 1 (424 kg ha− 1), and the MAE ranging between 276 and 
345 kg ha− 1. The random forest method was thus selected for further 
analysis. 

The random forest model was fine-tuned by reducing the number of 
variables not contributing to increasing the model performance (Fig. 2D) 
and by adjusting the hyper-parameters mtry, ntree, and nodesize to con
trol the bias-variance trade-off (Fig. 3). The RMSE decreased with 
increasing number of variables used for model fitting and stabilized at 
approximately 45 variables, beyond which the RMSE slightly increased 
(Fig. 2D). The RMSE of the model with all 51 variables was 419 kg ha− 1, 
which was comparable to the RMSE of the model with 45 variables, 
417 kg ha− 1. The R2 of the training and cross-validation datasets was 
computed for each combination of the hyper-parameters nodesize and 
ntree against the best mtry value. The R2 in the training dataset ranged 
between 0.81 in the model with nodesize 15, ntree 1500, and mtry 10, to 
0.56 in the model with nodesize 210, ntree 1500, and mtry 17 (Fig. 3). The 
R2 in the cross-validation dataset was fairly constant across different 
combinations of hyper-parameter values, varying between 0.52 and 
0.55 (Fig. 3). The R2 of 0.81 in the training dataset and 0.54 in cross- 
validation dataset clearly indicates model overfitting. The 

combination of hyper-parameters where the difference of R2 between 
training (0.62) and cross-validation dataset (0.53) was less than 10% 
were nodesize 105, ntree 500, and mtry 13. These hyper-parameters 
combinations were thus used in further analyses. The list of important 
variables and hence the model interpretation did not change for nodesize 
values of 90, 105, and 120 (data not shown). 

The final random forest model performed well in both training and 
test datasets and in the pooled dataset (Fig. 4). Lin’s concordance cor
relation coefficient was 0.72 and 0.67 for the training and test dataset, 
respectively (Fig. 4A), and 0.74 for the pooled dataset (Fig. 4B). In the 
test dataset the RMSE was 414 kg ha− 1 and the MAE was 311 kg ha− 1. 
Model performance on the pooled data was similar to that on the 
training dataset (R2 of ca. 0.62) indicating the training dataset was a true 
sub-sample of the whole data. Model performance in the test dataset was 
slightly lower with a R2 of 0.56. 

3.2. Important variables affecting wheat yield and their effect sizes 

Biophysical variables had a stronger impact on wheat yield vari
ability than management variables (Fig. 5). The monthly average of 
cumulative solar radiation during the February and March (the period 
corresponding to reproductive stage of wheat) and N application rate 
were the most important biophysical and management variables gov
erning the wheat yield variability, respectively (Fig. 5). Minimum and 
maximum temperatures during the December-January and February- 
March periods were also identified as important biophysical variables. 
Other important management variables were residue retention, seeding 
rate, and disease severity (whether medium or no and low). Yet, seeding 
rate and disease severity had a much lower contribution towards 
reducing model error than N application rate or residue retention 
(Fig. 5). 

The effect size of the most important variables, i.e., cumulative solar 
radiation during the February and March and N application rate, on 
wheat yield were compared to the mean wheat yield across the surveyed 
fields using the Accumulated Local Effect (ALE) plot (Fig. 6). The 
monthly average of cumulative solar radiation during February and 
March varied between 83 and 98 kW m− 2 (Fig. 6A). The ALE plot of the 
cumulative solar radiation during February and March indicated a 
maximum yield benefit of 372 kg ha− 1 across the range observed for 
solar radiation. Although there was a general increase in wheat yield 
with increased solar radiation during February and March, two local 
minima were identified at cumulative solar radiation of 87 and 95 kW 
m− 2 (Fig. 6A), both observed in the districts of Ambala (data not shown). 
The pattern described by the partial dependency plot was similar to that 
described by the ALE plot between solar radiation and wheat yield 
(Fig. 6B). The quantile regression showed a monotonous trend to solar 
radiation with a concave response pattern (Fig. 6B). 

The ALE plot of N application rate vs wheat yield indicated a net yield 
benefit of 272 kg ha− 1 in the range of observed N application rates 
(between 90 and 230 kg N ha− 1; Fig. 6C). The mean wheat yield of 4.9 t 
ha− 1 was associated with N application rates between 140 and 170 kg N 
ha− 1, whereas increasing N application rate up to 230 kg N ha− 1 

improved wheat yield by 78 kg ha− 1 only. The results of the ALE plot 
were confirmed by those of the PDP, which indicated a net yield benefit 
of 180 kg ha− 1 across the N application range observed in the data 
(Fig. 6D). The quantile regression fitted to the 90th percentile of the data 
also confirmed the small increment in wheat yield to N application in the 
range of reported N application rates (Fig. 6C), which were likely near 
optimum for most fields. Yet, wheat yield response to N application was 
greater for N application rates below 130 kg N ha− 1 (but very few 
farmers had a N application rate below 130 kg N ha− 1). Further, the 
quantile regression predicted wheat yield without N applied around 
3.3 t ha− 1 (Fig. 6C). 

Fig. 3. Fine-tuning of the selected random forest model for the hyper-param
eters’ combinations of ntrees and nodesize. The hyper-parameter ntrees refers to 
the number of trees to be grown and nodesize refers to the number of obser
vations in the terminal nodes. The selected values for the hyper-parameters’ 
combination are shown by the dashed vertical line. 
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Fig. 4. Model evaluation based on (A) the relationship between observed and predicted wheat yield on the train and test datasets from the model fitted to the train 
dataset and predicted on test dataset, and (B) the relationship between observed and predicted wheat yield fitted on the pooled data. Solid lines show linear re
gressions fitted to the data, with the respective coefficient of determination (R2) shown in the legend of each panel. 

Fig. 5. Variable importance for management and biophysical variables governing wheat yield variability in the Northwestern Indo-Gangetic Plains of India. Ab
breviations: DAS = days after sowing, DOY = day of the year, ZT = zero tillage, MT = minimum tillage. 
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Fig. 6. Effect size of the two most important 
variables explaining the wheat yield variability 
in the Northwestern Indo-Gangetic Plains of 
India: (A) accumulated local effect (ALE) plot of 
monthly averages of cumulative solar radiation 
during February and March, (B) partial de
pendency plot (PDP) and quantile regression 
between monthly average of cumulative solar 
radiation during February and March and 
wheat yield, (C) ALE plot of N application rate, 
(D) wheat yield as a function of N application 
rate. Solid lines in (B) and (D) show quantile 
regressions fitted to the 90th quantile and 
dashed lines show the respective partial de
pendency plot.   

Fig. 7. Analysis of interaction terms explaining wheat yield variability in the Northwestern Indo-Gangetic Plains of India: (A) overall interaction strength for 
management and biophysical variables, and (B) two-way interactions for the four management variables with greatest overall interaction strength. 
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3.3. Interactive effect of different management practices on wheat yield 

The greatest overall interaction strength among management vari
ables was observed for residue management, N application and seeding 
rates, where the interaction strength was greater than 0.1 (Fig. 7A). For 
these variables, nearly 17–27% of the wheat yield variability was 
described by their interaction with other variables. Different manage
ment by management interactions were identified including: (1) residue 
management with seeding rate, disease incidence, and N application 
rate, (2) N application rate with seeding rate and disease incidence, and 
(3) seeding rate with disease severity (Fig. 7B). Alike the direct effect of 
biophysical variables, they also affected the wheat yield through inter
acting with other management variables. Regarding biophysical vari
ables, the overall interaction strength was greatest for average minimum 
temperature and monthly cumulative solar radiation during February 
and March (Fig. 7A). 

Wheat yield response to N applied was greater in fields where resi
dues were removed than in fields where residues were retained 
(Fig. 8A). The slope of the linear regressions was equal to 4.8 and 
13.8 kg yield kg− 1 N applied for fields where residues were retained and 
removed, respectively. There was also a positive relationship between N 
applied and wheat yield when the seeding rate was close to the rec
ommended rate of 100 kg ha− 1 (Fig. 8B), whereas no wheat yield 
response to N applied was observed for fields with seeding rates beyond 
optimal levels (Fig. 8B). Disease severity also affected wheat yield 
response to N applied as fields with lower N application rates incurred 
greater yield losses under moderate disease incidence than fields where 
no or low disease infestation was reported (Fig. 8C). 

Wheat yield response to seeding rate was greater when residues were 
removed (slope of linear regression equal to 52.3 kg yield kg− 1 seed) 

than when residues were retained in the field (− 3.5 kg yield kg− 1 seed; 
Fig. 8D). Yet, residue retention translated into greater wheat yield than 
residue removal for seeding rates close to the recommended rate of 
100 kg ha− 1 and into lower wheat yield at seeding rates beyond 
125 kg ha− 1. Wheat yield response to seeding rate was greater in fields 
reporting incidence of diseases (Fig. 8E) than in fields not reporting this 
stress. Moreover, moderate disease infestation led to larger yield losses 
in fields where seeding rate was close to the recommended seeding rate. 
The interaction effect of disease severity and residue retention revealed 
that, under low disease infestation, both retention and removal of resi
dues resulted in a similar mean wheat yield, whereas residue retention 
resulted into 750 kg ha− 1 higher mean wheat yield than residue 
removed and disease affected fields (Fig. 8F). 

4. Discussion 

4.1. Comparison of machine learning models 

Very few studies evaluated the performance of a wide range of ma
chine learning methods (Table 1) to explain crop yield variability in 
agronomic data (Mourtzinis et al., 2019; Paudel et al., 2021). 
Regression-based methods have been used traditionally in similar ap
plications as they are easy to interpret (Silva et al., 2020; Basso and Liu, 
2019), yet these models were least effective in explaining yield vari
ability in this study (Fig. 3A–C). This was probably because of the 
presence of non-linear and complex relationships in the dataset, which 
regression-based methods cannot account for. More complex methods, 
such as random forest, extreme gradient boosting, or support vector 
machines, performed better than regression-based methods, with 
random forest performing best in explaining wheat yield among all 

Fig. 8. Empirical analysis of important management × management interactions explaining wheat yield variability in the Northwestern Indo-Gangetic Plains of 
India. Solid lines in (A) – (F) show linear regressions fitted to the data and the respective coefficient of determination (R2) is presented in the legend of each panel. 
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models tested (Fig. 3A–C). 
Tree-based methods are well-known to outperform regression-based 

methods in different domains (Breiman, 2001; Jeong et al., 2016) as 
they capture non-linear relationships and interactions between vari
ables. Jeong et al. (2016) also observed random forest performing better 
than regression-based methods for predicting crop yield. Nigam et al. 
(2019) too concluded that random forest was the best method to predict 
the rice yield in India. The ALE plots and PDP (Fig. 6) clearly show the 
existence of non-linear relationships between wheat yield and bio
physical and management variables. Moreover, the analysis of in
teractions also confirms the presence of complex relationships between 
biophysical and management factors to explain wheat yield variability 
(Fig. 7), which were well-captured with tree-based methods. It is thus 
recommended to use random forest, or variants of random forests like 
conditional random forest, in future agronomic studies aiming to explain 
crop yield variability using first order and interaction effects, as done in 
some other recent applications (Tseng et al., 2021; Devkota and Yigezu 
et al., 2020; Paudel et al., 2021; Garnaik et al., 2022). 

Proper use of machine learning methods, including random forest, 
requires fine-tuning of model hyper-parameters (Fig. 3) to avoid the 
bias-variance trade-off (James et al., 2013). This is important to avoid 
overfitting the models on the training dataset at the expense of model 
performance in the test dataset. It is not recommended to interpret 
overfitted models as such models may capture noise and errors inherent 
to each dataset. This step is often ignored, or not reported, in agronomic 
studies which leads to unreproducible workflows and potentially biased 
results and conclusions. 

4.2. Determinants of wheat yield in the Northwestern IGP of India 

Wheat yield variability in the Northwestern IGP of India was mostly 
explained by biophysical variables than by management variables 
(Fig. 5), as expected in high productivity cropping system operating 
close to yield potential. However, the effect size of the important bio
physical and management variables was generally small due to high 
input use for most farms (Table 2 and Fig. 6). Such small effect size of 
biophysical and management variables on crop yield were also observed 
for rice crops in the same region (Nayak et al., 2022), and for 
high-yielding wheat crops in other regions (Silva et al., 2020; Lollato 
et al., 2019). As expected, the effect size estimated with model inter
pretation techniques had the same sign but slightly smaller magnitude 
than that observed in descriptive data analysis using quantile re
gressions for the range of input use observed in the data (Fig. 6). This 
means that first-order responses observed in descriptive data analyses 
are modulated by non-linear relationships, errors, and interactions be
tween different factors. The PDP and ALE plots show the repsonse for 
predicted yield and input use from the fitted ML model, where as the 
descriptive quantile regression shows the response present in the raw 
data which has embeded noise inside it. 

The most important variables explaining wheat yield variability 
were monthly average of cumulative solar radiation received during 
February and March and N application rate (Fig. 5). The average of 
cumulative monthly solar radiation during February and March had a 
positive effect on wheat yield, which might be due to better availability 
of photosynthates for proper grain filling and increasing the test weight 
of the wheat grain during the grain filling period (Villegas et al., 2016). 
Alike earlier findings, we also observed important effects of minimum 
and maximum temperature on wheat yield (Fischer et al., 2022), but the 
narrow range of temperature observed in farmers’ fields do not allow to 
derive conclusive results of their effect on wheat yield in the North
western IGP. Wheat yield response to N is well-document for modern 
wheat cultivars in the Northwestern IGP (Kaur and Ram, 2017), as those 
reported in this study (Table 2). Park et al. (2018) also reported a pos
itive wheat yield response to N applied in the region using machine 
learning methods. Yet, interactions between N and residue retention, 
seeding rates, and disease incidence must be considered, along with the 

first-order effects of N on wheat yield (Fig. 6D). Wheat yield response to 
N applied was also affected by temperature during key periods of the 
growing season (Fig. 7B), which is in line with recent findings by Sadras 
et al. (2022). 

Crop residue retention has been recommended for rice-wheat crop
ping systems in the Northwestern IGP due to the beneficial effect of 
residue retention on soil health and crop productivity (Jat et al., 2019; 
Parihar et al., 2018, 2019; Aryal et al., 2015; Sapkota et al., 2019) and 
potential to reduce environmental pollution by avoiding residue burning 
(Shyamsundar et al., 2019). Although we observed a small direct effect 
of residue retention on wheat yield, residue management had the largest 
interaction strength and interacted with seeding rate, disease infesta
tion, and N applied (Fig. 7). Retention of crop residues improves soil 
structure, which in turn regulates soil moisture, and improves crop 
establishment (Hobbs et al., 2008), facilitating an earlier germination 
and initial vigorous crop growth. Bastos et al. (2020) also reported a 
small wheat yield response to seeding rate in a high yielding environ
ment, which can be compared to the situation of greater wheat yield 
under residue retained environment. Microbial diversity increases with 
residue retention, which in turn improves soil fertility and crop yield 
(Choudhary et al., 2018). The increase in antagonistic microbial popu
lation with residue retention is also known to suppress disease infesta
tion (Bailey, 1996). Soil health boosts early crop growth and results into 
greater biomass accumulation (Nayak et al., 2022a; Gathala et al., 
2013), and thus help in tolerating biotic and abiotic stresses, like disease 
infestation. This explains why wheat crops in fields with residue reten
tion had greater yield even under disease infestation (Fig. 8E –F). 

The interaction between residue retention and N application depends 
on crop, soil, and longevity of residue retention (Linquist et al., 2006; 
Thuy et al., 2008). Often the benefits from organic forms of N are 
observed at low rates of inorganic N application. Alike our results 
(Fig. 8), Singh and Gupta (2009) observed a positive effect of residue 
retention on wheat yield, when the amount of N applied was about 
120 kg ha− 1, whereas higher N application of 150 kg ha− 1 was benefi
cial under residue removed or burnt conditions. Immobilization and 
volatilization losses of N fertilizer under residue retained conditions at 
high N rates might have also caused a smaller yield response to N at high 
N rates under residue retention conditions (Tisdale and Nelson, 1966). 

Seeding rate interacted with disease incidence (Fig. 8E and F). Fields 
with seeding rates close to the recommended seeding rate of 
100–110 kg ha− 1 experienced larger yield losses from disease infesta
tion than fields with seeding rates above the recommended rate, which 
might be linked to stand density and other factors not captured in this 
study. Similarly, wheat yield response to N applied was higher under 
optimal seeding rates only, whereas with seeding rates greater than the 
recommendation there might be interplant competition resulting in a 
smaller yield response to N applied. The role of biotic factors in reducing 
wheat yield response to other management and biophysical factors is 
another outcome of our analysis (Fig. 8) and confirms the importance of 
pest, disease, and weed management in high-yielding cropping systems 
(Nayak et al., 2022; Shah et al., 2021; Lawes et al., 2021). 

4.3. Prospects for interpretable machine learning in agronomic studies 

In this study, machine learning methods were useful to explain crop 
yield variability, to identify the most important variables explaining it, 
and to quantify the optimum level of such variables (Fig. 6). The results 
revealed a small yield response to management and biophysical vari
ables with the effect sizes estimated from machine learning methods 
being slightly smaller than those estimated with quantile regressions 
(Fig. 6), which do not account for important interactions in the data and 
shows response from the raw data which has some noise embedded with 
it (Figs. 7 and 8). The small effect size of management and biophysical 
variables are a feature of high-yielding cropping systems, where 
resource use is generally high (de Wit, 1992; Silva et al., 2021). 
Improved crop management that tackles the twin goals of increased 
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productivity with reduced environmental externalities in 
input-intensive and highly productive cropping systems will require 
fine-tuning management practices and better matching that with bio
physical conditions during the growing season (Fig. 8; Shah et al., 2021; 
Silva et al., 2017). 

Beyond explaining yield variability and identifying its key drivers, as 
done in this study, machine learning methods could also be used to 
predict crop yield in space and time (Van Klompenburg et al., 2020). 
Understanding model portability is crucial to assess the applicability of 
machine learning methods over multiple growing seasons and for 
cropping systems in different stages of intensification. The performance 
of machine learning models are highly data specific, i.e., it depends on 
different combinations of input data, total variability present in the 
dataset, and number of explanatory variables included. Therefore, such 
type of studies must be conducted across multiple environments. ‘Big 
data’ and associated data-driven analytics have been proposed as a new 
avenue for agronomic research in the coming decades (Vanlauwe, 
2020). Such methods offer an expedient way to generate insights that 
can be used to guide improved crop management recommendations 
based on data derived from on-farm observations collected across large 
scales, rather than through manipulative experiments implemented in a 
handful of locations. However, it remains unclear how to harness these 
approaches and accelerate their use to aid in more robust recommen
dations that can inform decision making by farmers and extension ser
vices. Given the complexity of model outputs, research is therefore 
needed to develop systems for enhanced data interpretation and to 
develop guidelines for how to responsibly generate actionable recom
mendations from model outputs. Model stacking and ensemble tech
niques could also be useful for yield prediction and remote 
sensing-based indices can potentially help improving model perfor
mance, but interpretability of remote sensing data to make more 
generalizable, yet actionable, recommendations also needs further 
research. 

The application of machine learning methods should not be limited 
to the identification of the key influencingy variables on yield patterns, 
but should also seek to quantify the effect sizes and their interactions in 
driving yield variability across farmers’ fields. Machine learning inter
pretation techniques are suitable to screen many interactions and 
identify those with the largest effect on crop yield (Figs. 7 and 8). This is 
often hard to do with parametric statistical methods, which require a 
certain number of degrees of freedom for reliable model fitting. As a next 
step, the optimum range of such variables should be quantified specific 
to the production environment, but also to consider the influence of a 
range of socioeconomic variables and how they may affect crop man
agement and in turn, yield patterns. Such analyses could be further 
complemented with the analyses of trade-offs between crop yield and 
other indicators of sustainability, namely profitability, resource-use ef
ficiency, and environmental footprints, to explore new pathways to 
more productive, profitable, and environmentally sound cropping 
systems. 

5. Conclusion 

A large database characterizing wheat production in the North
western Indo-Gangetic Plains of India was used to explain wheat yield 
variability in the region using machine learning methods. Machine 
learning models with different levels of complexity and interpretability, 
including regression-, tree-, and decision boundary-based methods, 
were compared for their ability to explain wheat yield variability. 
Random forest outperformed the eight other tested models, with a mean 
R2 of 52% and a RMSE of 430 kg ha− 1 in the test dataset. Biophysical 
variables had a stronger effect on wheat yield variability than man
agement variables. Cumulative radiation over the months of February 
and March was the most important biophysical variable explaining 
wheat yield variability with an effect size of 373 kg ha− 1. N application 
rate was the second most important management variable explaining 

wheat yield variability in the region. Interactions between biophysical 
and management variables explained up to 25% of wheat yield vari
ability. Wheat yield response to the most important variables and their 
interaction was generally small, which is a feature of high-yielding 
cropping systems. These small effect sizes were confirmed by accumu
lated local effect plots, partial dependency plots, and analysis of the 
primary data with quantile regressions. Yet, increases in effect size are to 
be expected in cropping systems with greater variability in crop yield 
and input use than observed in this study, which should be explored with 
the application of machine learning methods to other cropping systems. 
Further research is also needed to better understand trade-offs between 
crop yield, profitability, and a range of sustainability indicators, in order 
to identify pathways for more productive, remunerative, and environ
mentally sound wheat production in Northwestern Indo-Gangetic Plains 
of India. 
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