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A B S T R A C T   

A large database of individual farmer field data (n = 4,107) for rice production in the Northwestern Indo- 
Gangetic Plains of India was used to decompose rice yield gaps and to investigate the scope to reduce nitro
gen (N) inputs without compromising yields. Stochastic frontier analysis was used to disentangle efficiency and 
resource yield gaps, whereas data on rice yield potential in the region were retrieved from the Global Yield Gap 
Atlas to estimate the technology yield gap. Rice yield gaps were small (ca. 2.7 t ha− 1, or 20% of potential yield, 
Yp) and mostly attributed to the technology yield gap (ca. 1.8 t ha− 1, or ca. 15% of Yp). Efficiency and resource 
yield gaps were negligible (less than 5% of Yp in most districts). Small yield gaps were associated with high input 
use, particularly irrigation water and N, for which small yield responses were observed. N partial factor pro
ductivity (PFP-N) was 45–50 kg grain kg− 1 N for fields with efficient N management and approximately 20% 
lower for the fields with inefficient N management. Improving PFP-N appears to be best achieved through better 
matching of N rates to the variety types cultivated and by adjusting the amount of urea applied in the 3rd split in 
correspondance with the amount of diammonium-phosphate applied earlier in the season. Future studies should 
assess the potential to reduce irrigation water without compromising rice yield and to broaden the assessment 
presented here to other indicators and at the cropping systems level.   

1. Introduction 

Rice contributes to about 30% of the calories consumed in India 
(Mohanty and Yamano, 2017) and is an important source of foreign 
exchange for the Government of India. India grows rice on about 43.8 
million ha, with a total production of about 116 million tonnes per year 
(Government of India, 2019). Yet, rice cropped area in the country is 
predicted to decline by 6–7 million ha by 2050, because of climate 

change and conversion of agricultural land to other uses (Central Rice 
Research Institute, 2013). At the same time, consumer demand for rice is 
expected to rise from 114 to 137 million tons in the coming years 
(Central Rice Research Institute, 2013). As a consequence, rice pro
duction will need to increase by about 1.1% per year over the next four 
decades to ensure rice self-sufficiency at the national level (Gathala 
et al., 2013). The additional rice demand projected for the decades 
ahead must be met through increasing rice yields in low-yielding 
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regions, while maintaining current rice yields in high-yielding regions, 
as there is limited scope to bring additional land into cultivation. The 
maintenance of high-yielding areas must be achieved sustainably, as rice 
cultivation alone consumes approximately 80% of the energy and water 
used in Indian agriculture, and is responsible for 90% of the total 
greenhouse gas (GHG) emissions of all monsoon season cropped cereals 
(Davis et al., 2019). 

The Northwestern Indo-Gangetic Plains (IGP) of India, which in
cludes the states of Punjab and Haryana, account for approximately 25% 
of the country’s total rice area. The dominant cropping system in the 
Northwestern IGP comprises a rice crop grown during the rainy season 
(or ’kharif’, between July and November) in rotation with a wheat crop 
during the winter season (or ’rabi’, between November to April), with 
land kept fallow between wheat harvest and rice planting. Rice is pre
dominantly grown by transplanting seedlings into wet-tilled puddled 
soil and the field is kept flooded for most of the growing season. The high 
rice yields in the states of Punjab and Haryana are the result of adoption 
of improved varieties, intensive use of irrigation water and fertilizers, 
and the expansion of irrigated areas (Mohanty and Yamano, 2017). The 
latter were largely encouraged through government subsidies on elec
tricity and fertilizer N, coupled with market guarantee of paddy pur
chase through minimum support prices. For instance, farmers in the 
states of Punjab and Haryana on average use 1,320 and 1,800 mm of 
irrigation water, respectively, for rice cultivation (Sharma et al., 2018), 
despite these being water-scarce regions. These two states use nearly 
30% of total electricity consumption in the agricultural sector (Sharma 
et al., 2018). The overexploitation of groundwater resources for irriga
tion, a decline in the response to applied fertilisers, the emergence of 
micronutrient deficiencies and herbicide resistant weeds, and increasing 
pressure from pests and diseases have raised concerns about the sus
tainability and profitability of rice production in the Northwestern IGP 
of India (Bhatt et al., 2016, 2021). 

Sustainable intensification aims to narrow yield gaps on existing 
agricultural land while increasing resource-use efficiencies and mini
mizing environemntal externalities (Silva et al., 2021b, Cassman and 
Grassini, 2020). Yield gaps are defined as the difference between po
tential and actual yields for irrigated crops (van Ittersum et al., 2013), 
with the magnitude of the gap providing a metric for how efficiently 
land is used under on-farm conditions. Potential yield (Yp) is defined as 
the yield of a crop cultivar when grown with water and nutrients 
non-limiting and biotic stresses effectively controlled, whereas actual 
yield (Ya) refers to the yield observed in farmers’ fields subject to water 
and nutrient limitations, and to reductions by pests, diseases and weeds 
(van Ittersum and Rabbinge, 1997). Identifying the causes behind 
existing yield gaps can aid in the development of more appropriate soil 
and crop management advisory systems, which, if designed with 
on-farm data and through farmer participation, may be more 
commensurate with farmers’ objectives and constraints (Silva et al., 
2017a, 2017b; Rattalino-Edreira et al., 2018; Prasad et al., 2017). Yield 
gap assessments are also helpful to inform the scope for sustainable 
intensification at local level (Silva et al., 2021b; Stuart et al., 2016, 
Lobell et al., 2009). 

Understanding the drivers behind yield gaps and the opportunities to 
increase crop yield, or reduce inputs without compromising crop yield 
under on-farm rather than experimental settings, requires a wealth of 
individual farmer field data with detailed biophysical and crop man
agement information (Beza et al., 2017). Such data are becoming 
increasingly available across farming systems around the world (Silva 
et al., 2020; Rattalino-Edreira et al., 2018). When combined with sec
ondary biophysical data, such detailed information can be used to infer 
the performance of multiple genotypes and their interactions with 
environmental and management factors. Such analyses can be compa
rable to running thousands of field experiments, and can aid in the 
identification of best-bet management options in a given biophysical 
unit, in a cost-effective way (Rattalino-Edreira et al., 2018). The latter is 
crucial to accelerate the sustainable intensification of current cropping 

systems and to design research and development programs supporting 
progress towards the application of improved management practices 
that reduce yield gaps while improving resource-use efficiency in 
farmers’ fields. 

The objective of this study was two-fold: (1) to decompose rice yield 
gaps into efficiency, resource, and technology yield gaps, and (2) to 
assess the scope to reduce input use while maintaining current rice 
yields at the regional scale in the Northwestern IGP of India. We hy
pothesized that rice yield gaps in this region are relatively small (i.e., 
20–30% of Yp), due to the intensive use of inputs, and that input use 
(particularly irrigation water and N) could be reduced without 
compromising crop productivity. Our analysis builds upon a large 
database (n = 4,107 fields) of crop management practices reported by 
individual farmers collected during the 2020 kharif season in the states 
of Punjab and Haryana. Our study provides both evidence of, and a 
methodology for, the quantification of yield gaps and the identification 
of approaches to increase resource-use efficiency. This approach repre
sents a potential alternative to manipulative experimentation that could 
be reproduced in different cropping systems and environmental contexts 

2. Materials and methods 

2.1. Database of farmer field data 

2.1.1. Field survey and primary data collection 
A field survey was conducted by the Indian Council of Agricultural 

Research – Central Soil Salinity Research Institute (ICAR-CSSRI), the 
Bourlag Institute for South Asia (BISA) and the International Maize and 
Wheat Improvement Centre (CIMMYT) during the 2020 kharif (rainy) 
season across rice fields in the states of Punjab and Haryana (Fig. 1). 
Haryana and Punjab are the two most important states for rice pro
duction in the Northwestern IGP and are comprise of arid environment 
with saline soil in some parts of Haryana. The surveyed districts in 
Punjab lie on the central plain agro-climatic zone characterized by a 
semi-arid to dry subhumid climate, with a mean annual temperature of 
23.3–25.8 ◦C and an average rainfall of 600mm (70% of which is typi
cally received during monsoon season that spans from July to 
September), and by medium to deep alluvial soils with textures varying 
from sandy to silty clay. The districts surveyed in the state of Haryana lie 
on the alluvial plains of the Yamuna River with some pediments of origin 
in the Aravalli hills. Climatic conditions are similar to those found in the 
Punjab, with a mean minimum temperature of 18 ◦C and maximum of 
34 ◦C, and an average rainfall of 535mm (80% of which is received 
during the monsoon season, usually from July to September). 

The field survey covered four districts in Punjab (Kapurthala, Fate
hgarh Sahib, Ludhiana, and Patiala) and three districts in Haryana 
(Ambala, Karnal and Kurukshetra). These districts were selected pur
posively to represent intensive rice-wheat cropping systems in these 
states. These states have extreme specialization of rice and wheat grown 
in a rotational cropping system. About 60–80% of the gross cropped area 
of each state has been dedicated to rice and wheat rotations (Singh et al., 
2017; DESA, 2020). Within each district, farmers were selected 
randomly. This resulted in 2,265 farmers surveyed in Punjab (580 in 
Ludhiana, 546 in Patiala, 570 in Kapurthala, and 569 in Fatehgarh 
Sahib) and 1,842 farmers in Haryana (652 in Ambala, 571 in Karnal, and 
619 in Kurukshetra). The fields to which surveys corresponded were 
geo-referenced and farmers were requested detailed self-reported in
formation for the largest rice field of the farm on rice yield, varietal 
information, crop duration, and crop management practices (Table 1). 
Socio-economic information of farming households such as household 
size and farm size were also collected. Interviews were conducted right 
after rice harvest (October–December 2020) by trained enumerators 
using a semi-structured questionnaire designed for the Android-based 
ODK (Open Data Kit) platform (https://getodk.org/). 
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2.1.2. Actual yield (Ya) estimation 
Actual farm yields (Ya) were estimated based on farmer’s self- 

reported yields and measured crop-cut yields (Ycc) taken from a sub
sample of ca. 25% of the surveyed fields (1,014 out of 4,107 fields). The 
crop-cut yield assessment was done by manually harvesting a 2 × 2 m2 

quadrant (leaving a minimum of a 5–10 m border from each side of the 
field) followed by sun drying of bundles of harvested paddy (straw and 
grain) until constant weight and determining paddy yield at 14% 
moisture content. Grain moisture content was estimated in-situ using a 
hand-held moisture meter at the time of yield assessment. Farmers were 
also asked to provide their estimate of rice yield from the crop cut field 

and for the total area of the field. Rice yields (Yself) were then estimated 
in t ha− 1 based on self-reported production and measured field area size, 
assuming self-reported production was reported at 14% moisture con
tent. The GPS coordinates of the fields where the crop-cut assessment 
was not done were recorded using the ODK platform by revisiting the 
field after the interview. Ya of the fields in which crop cuts were not 
done were obtained from Yself by applying a linear regression fitted 
between Ycc and Yself (Ycc = 0.90 + 0.48 ×Yself ; R2 = 0.83; Fig. 2). Fields 
with a difference between Ycc and Yself greater than 1 t ha− 1 were 
removed from the dataset prior to fitting the linear regression (these 
comprised < 5% of the total sample). Such large discrepancy between 

Fig. 1. Location of the surveyed rice fields in the states of Haryana (n = 1842 fields) and Punjab (n = 2265 fields) located in the Northwestern Indo-Gangetic Plains 
of India during the 2020 kharif season. 

Table 1 
Descriptive statistics of non-basmati rice production systems in Punjab and Haryana during the kharif growing season of 2020.   

Average Standard deviation Maximum Minimum  

LD MD SD LD MD SD LD MD SD LD MD SD 

Rice grain yield (t ha− 1)  7.8  7.0  6.9  0.6  0.6  0.6  9.0  8.8  8.1  6.2  4.5  5.0 
Tillage operations (n)  6.5  5.9  6.1  1.4  1.4  1.4  10.0  12.0  11.0  1.0  1.0  3.0 
Sowing date (Julian days)  134.0  141.1  142.9  4.8  7.1  7.5  170.0  182.0  182.0  124.0  122.0  126.0 
Harvest date (Julian days)  299.2  287.2  274.7  5.8  7.3  6.6  315.0  318.0  306.0  267.0  253.0  253.0 
Growing season (days)  165.2  146.2  131.8  7.8  8.7  4.7  175.0  155.0  135.0  120.0  104.0  104.0 
Nursery duration (days)  31.3  28.9  28.7  5.7  5.0  4.3  40.0  40.0  40.0  0.1  0.1  0.1 
Number of irrigations (n)  47.0  34.8  36.4  8.2  13.8  12.8  60.0  60.0  60.0  30.0  5.0  4.0 
N applied (kg ha− 1)  156.2  159.3  162.1  18.5  21.3  21.1  229.5  229.5  229.5  103.5  80.5  80.5 
P2O5 applied (kg ha− 1)  8.9  26.7  31.8  18.4  27.4  27.6  57.5  88.8  97.8  0.1  0.1  0.1 
Fungicide applied (kg ai kg ai− 1)  1.2  1.1  1.1  0.6  0.6  0.7  3.1  3.5  3.9  0.1  0.1  0.1 
Herbicide applied (kg ai kg ai− 1)  1.0  1.0  0.9  0.4  0.5  0.5  2.8  7.5  6.0  0.1  0.1  0.1 
Insecticide applied (kg ai kg ai− 1)  2.2  1.6  1.8  1.1  1.0  1.2  7.4  6.9  8.5  0.1  0.1  0.1 
1st top dress of urea (DAT)  10.0  10.2  9.5  2.7  3.3  2.8  20.0  35.0  20.0  6.0  4.0  5.0 
2nd top dress of urea (DAT)  21.2  20.6  20.0  3.4  4.4  3.9  30.0  45.0  40.0  13.0  12.0  12.0 

Data are disaggregated per variety type. Codes: LD = long-duration variety, MD = medium-duration variety, SD = short-duration variety, DAT = days after trans
planting. We observed negligible application of organic inputs to rice, as organic materials are usually applied to higher-value crops such as vegetables, or to market 
and home gardens. Similarly, K and micronutrient application was negligible and therefore excluded. 
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crop cut and self-reported yields was probably the result of moisture 
contents below or above 14% while reporting Yself, and/or due to errors 
in the self-reported production or area of the surveyed field. 

2.1.3. Cleaning and curation of data 
A web-based dashboard was developed to visualize the data as they 

were collected from farmers’ fields in real-time. The dashboard extrac
ted the relevant data from a server housing the ODK data managed by 
the Cereal Systems Initiative for South Asia (CSISA) project, with errors/ 
extreme observations identified by employing univariate statistical 
methods (e.g., boxplots) as dashboard outputs that could be visually 
assessed. Enumerators were then asked to revalidate any outlying ob
servations by re-interviewing the farmer surveyed. The most common 
errors during data collection were related to spelling, the number of 
digits applied to numerical inputs, and due to misinterpretation of units, 
which were corrected following re-survey of farmers and using expert 
knowledge. 

Univariate outlier screening was conducted with the analysis of the 
Inter Quartile Range (IQR; boxplot technique) using the name of the rice 
variety as a sub-category and rice yield, fertilizer inputs, duration of the 
growing season, and irrigation number as dependent variables. There 
were many different varieties reported by farmers, all with varying 
frequency. Varieties reported by farmers were therefore grouped based 
on their growing season duration (short-, medium- and long-duration 
varieties). This grouping facilitates the comparison within the groups 
as short-, medium- and long-duration varieties are assumed to be ho
mogenous among themselves. The first quartile minus 1.5 × IQR was 
considered as the lower threshold and the third quartile plus 1.5 × IQR 
was considered as the upper threshold for the dependent variables. The 
minimum and maximum values for each variable were fixed based on a 
combination of expert knowledge and the distribution of the data 
observed for each variable (Table 1). Values of a particular variable 
greater than the maximum value or lower than the minimum value were 
identified as outliers and excluded from further analysis. Furthermore, 
bivariate and multivariate outliers were identified by applying the 
Robust Mahalanobis Distance (RMD, Gnanadesikan and Kettenring, 
1972) method. As an example, an N application rate of 80 kg N ha− 1 is 
not a univariate outlier but obtaining a rice yield of 8.0 t ha− 1 with 
80 kg N ha− 1 is an outlier in the Punjab and Haryana states. RMD is not 

sensitive to the presence of outliers up to a breakdown point of 50% (i.e., 
the method generates robust results even if 50% of the data are outliers). 
The algorithm finds the centre and the scale of the ellipse that represents 
the cloud of datapoints in the direction of maximum spread by taking a 
subset of the data, thus identifying potential outliers. If the calculated 
RMD for a given observation was greater than the cut-off value equal to 
the 0.975 quantile of the Chi-square distribution at n degrees of freedom 
(i.e., number of variables), then such observation was identified as a 
potential outlier. The RMD was calculated only when the presence of 
outliers was expected from the visual observation of the distribution of 
the data. Datapoints with such outliers were excluded from further 
analysis. This resulted in 4,107 out of 4,267 samples that were retained 
for final analysis. 

2.2. Secondary data sources 

Weather and soil data were obtained from secondary data sources 
using the GPS coordinates of the surveyed fields to co-locate crop 
management and yield data with secondary environmental data (Fig. 1). 
Minimum and maximum temperatures were obtained from the ERA5 
hourly re-analysed database (Sabater, 2019), which were converted to 
daily values by averaging hourly data. Rainfall data at 0.05◦ × 0.05◦

resolution were obtained from the Climate Hazards Group InfraRed 
Precipitation with Station data (CHIRPS; Funk et al., 2015). CHIRPS is a 
quasi-global rainfall dataset which combines data from real-time auto
matic weather stations with infrared data derived from sattellite ob
servations to estimate precipitation. Minimum and maximum 
temperatures and precipitation data were further averaged over the 
growing season (i.e., for the dates between sowing and harvesting) and 
combined with farmers’ reported management data obtained from the 
field survey. Soil texture data (i.e., percentage of sand, silt, and clay in 
the top 0–30 cm layer) were obtained for each field from the Interna
tional Soil Reference and Information Centre (ISRIC) soil database at a 
spatial resolution of 250 m (Hengl et al., 2017). Soil texture data were 
then used to derive soil classes for each of the observed fields (i.e., fine 
and medium textured soil) using the USDA textural triangle 
classification. 

2.3. Yield gap analysis 

Rice yield gaps in the Northwestern IGP of India were decomposed 
into efficiency, resource, and technology yield gaps. The efficiency yield 
gap refers to the difference between technical efficient yields (YTEx, i.e., 
the maximum yield that can be obtained for a given input level) and 
actual yields (Silva et al., 2017), and can be explained by sub-optimal 
crop management in relation to time, space and form of the inputs 
applied. Technical efficient yields and efficiency yield gaps were esti
mated for each rice field using stochastic frontier analysis, and were 
informed by concepts of production ecology (van Ittersum and Rab
binge, 1997). The resource yield gap refers to the difference between 
highest-farmers’ yields (YHF, i.e., mean Ya above the 90th percentile Ya) 
and YTEx, and can be attributed to sub-optimal amounts of inputs 
applied. Lastly, the technology yield gap refers to the difference between 
Yp simulated with crop growth models and YHF, hence reflecting 
resource yield gaps of individual inputs and/or technologies used by 
farmers not being able to reach Yp (Silva et al., 2017a, 2017b). The 
reader is referred to (Silva et al., 2017a) for a visual illustration of these 
concepts. 

The yield gap analysis focused on non-basmati rice only due to the 
small sample for basmati rice (scented rice) and differential management 
(e.g., N management and variety types) requirement of basmati 
compared to non-basmati rice. The area under non-basmati rice was 2.3 
M ha out of 2.9 M ha of rice area in Punjab and 0.6 M ha out of 1.3 M ha 
of rice area in Haryana (Udhayakumar et al., 2021). The area share of 
basmati rice area in both states varies between 20% and 50% of the total 
rice area depending on the year (APEDA, 2018). 

Fig. 2. Relationship between crop cut yield (t ha− 1) and self-reported yield (t 
ha− 1) for rice in the Northwestern Indo-Gangetic Plains of India during the 
2020 kharif season. The solid line shows the linear regression fitted to the data, 
which was then used to estimate the actual yield for the fields where crop cuts 
were not conducted. 
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2.3.1. YTEx and efficiency yield gaps 
Stochastic frontier analysis (Kumbhakar and Lovell, 2000) is useful 

to estimate the maximum yield that could have been produced in 
farmers’ fields with the level of inputs used. Stochastic frontiers differ
entiate two random errors – technical inefficiency ui (translated to 
agronomic terms as the efficiency yield gap) and random noise, or vi, 
hence separating the effects of sub-optimal crop management from 
random noise in the response variable. The relationship between rice 
yields on the one hand, and biophysical conditions and inputs applied on 
the other, was assumed to follow a translog functional form, which 
generic formulation is as follows (Eq. 1): 

ln yi = β0 +
∑K

k=1
βklnxki +

1
2
∑K

k=1

∑K

j=1
θkj(lnxki) × (lnxji)+ vi − ui (1)   

Eff. Ygi=1–exp(-ui)                                                                         (2)  

YTExi=Yai/exp(-ui)                                                                          (3) 

where yi is the rice grain yield of the ith farmer, xki is the kth input 
(fertilizer, irrigation, variety, etc.) used by the ith farmer, βk is an un
known vector of parameters to be estimated, and θkj are the parameters 
describing the second-order effects (squared and interactions) on the 
response variable. The random error vi is assumed to be independently 
and identically distributed (i.i.d.) following a N(0,σ2

v ) distribution, while 
the random error ui is assumed to be i.i.d. following a N+(0, σ2

u) distri
bution. The parameter γ = σ2

u/(σ2
u + σ2

v ) represents the fraction of the 
model residuals explained by the random error ui, from which the effi
ciency yield gap is calculated (Eq. 2). Stochastic frontier models with a 
Cobb-Douglas functional form (i.e., considering first-order variables 
only) were also fitted to the data for comparative purposes. Log- 
likelihood ratio tests comparing nested Cobb-Douglas and translog sto
chastic frontier models indicated the stochastic frontier model with a 
translog functional form fitted the data best (i.e., the log-likelihood 
value of the translog model was significantly greater than that of the 
Cobb-Douglas model at p < 0.0001). Efficiency yield gaps (Eq. 2) and 
YTEx (Eq. 3) were thus estimated from the stochastic frontier model with 
the translog functional form. 

The vector of biophysical and management variables, xki, was 
defined according to concepts of production ecology (van Ittersum and 
Rabbinge, 1997). The variables maximum and minimum temperature 
(⸰C), sowing date, seed rate (kg ha− 1) and rice variety (short-, medium-, 
and long-duration) were included in the analysis to capture the effects of 
growth-defining factors on crop yield. Growth-limiting factors in rela
tion to water and nutrient management were captured in the analysis 
with the following variables: precipitation (mm), number of irrigations 
(n), soil type (fine and medium textured soils), number of tillage oper
ations (n), N applied (kg N ha− 1) and P applied (kg P2O5 ha− 1). The 
extent to which growth-reducing factors affected crop yields was 
assessed through the variables including the total amount of fungicide, 
herbicide, and insecticide applied, seed treatment (yes/no) and weed 
control method (manual, herbicide, or both). The amount of herbicides 
applied per hectare were divided by the recommended dose to stan
dardize the effect of high and low dose of herbicides. A similar trans
formation was done to the amount of fungicides and insecticides 
applied. Multicollinearity between the aforementioned variables was 
checked using the Variable Inflation Factor (VIF) as implemented in the 
vif() function of the car package in R (Fox and Weisberg, 2019). All 
variables used in the analysis had a VIF value below 5 and hence, were 
not multicollinear. All continuous variables were mean-scaled and 
log-transformed prior to the analysis so that model parameters can be 
interpreted as elasticities, assuming all other inputs kept at their mean 
level. 

The stochastic frontier model described in Eq. (1) was also estimated 
with inefficiency effects to identify the deteminants of crop management 
on the efficiency yield gap (Battese and Coelli, 1995). To do so, the 

production frontier and the inefficiency effects were estimated simul
taneously in a single step in which the production frontier was defined as 
per Eq. (1) and the inefficiency effects were described as follows (Eq. 4): 

ui =
∑J

j
δjzji + εi (4)  

where the zi comprises the sources of inefficiency due to sub-optimal 
crop management and ε is a random error. In this model, ui is 
assumed to be i.i.d. following a N+(

∑J
j δjzji,σ2

u) distribution (Battese and 
Coelli, 1995). The vector zi includes the duration of the nursery of the 
rice seedlings (days), the duration of the fallow period (days), the days of 
the first and second top-dress application of urea (days after trans
planting, DAT), the number of insecticide splits (n) applied and the days 
of the first application of fungicide, herbicide, and insecticide (DAT). 
The stochastic frontier models were fitted to the pooled data using the 
sfa() function of the R package frontier (Coelli and Henningsen, 2020). 

2.3.2. YHF and resource yield gaps 
Farmers’ fields were categorized into highest-, average- and lowest- 

yielding based on the distribution of Ya observed in the dataset. Field 
categories were defined for unique variety × soil type combinations to 
ensure yield differences between fields in each category were due to 
variation in crop management rather than to differences in genotype and 
biophysical factors. Rice varieties reported by farmers were further 
classified into three groups based on growth duration (i.e., short, me
dium, and long) using expert knowledge from agronomists in the region. 
Soil types with fine and medium texture were retrieved from ISRIC 
database using the field-specific GPS coordinates. Climatic conditions 
were assumed to be homogenous across Punjab and Haryana, as the IGP 
are characterized by flat alluvial soils (see Section 2.1.1). 

Highest-yielding fields were defined as those with rice yields above 
the 90th percentile of Ya, and highest-farmers’ yields (YHF) were calcu
lated as the mean Ya in the highest-yielding fields. The resource yield 
gap was estimated for each field as the difference between YHF and YTEx. 
Lowest-yielding fields refer to the fields where rice yields were below 
the 10th percentile of Ya, and lowest-farmers’ yields (YLF) were calcu
lated as the mean Ya in lowest-yielding fields. Finally, average-yielding 
fields include the fields where rice yields were between the 10th and 90th 

percentile of Ya, and the average-farmers’ yield (YAF) were calculated as 
the mean Ya in average-yielding fields. Quantile regressions were fitted 
to the 98th percentile of the pooled data with the smf() function of the 
statsmodels library in Python (Seabold and Perktold, 2010) to assess the 
rice yield response to the number of irrigations and N applied. A logistic 
functional form of the type y = a + b × x + c × 0.99x was assumed for 
this relationship. A similar analysis was conducted for the relationship 
between sowing and harvest dates on the one hand and rice yield on the 
other. A linear relationship of the type y = a × x + b was assumed for 
the latter. 

2.3.3. Yp and technology yield gaps 
Yp for irrigated rice in the Northwestern IGP of India were retrieved 

from the Global Yield Gap Atlas (GYGA, www.yieldgap.org). GYGA in
cludes data on yield ceilings for yield gap analysis simulated with cali
brated crop models embedded within a spatial framework (van Ittersum 
et al., 2013). Yp of irrigated rice in India included in the GYGA was 
simulated with the APSIM crop model (Holzworth et al., 2014) for the 
monsoon kharif season over the years 1997–2015 (Grassini et al. 2015; 
van Bussel et al., 2015). Further details about the parametrization of the 
crop model, the weather data used, and the cropping systems considered 
in the simulations are available at www.yieldgap.org/India. 

The average Yp over the years 1997–2015 for a given climate zone 
was taken as a benchmark for the rice yields obtained in the field survey 
conducted during the kharif season of 2020. Ideally, the Yp benchmark 
should coincide with the year of the Ya data, but this was not possible in 
this study due to lack of updated data in GYGA. Yet, the average Yp 
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values adopted here for irrigated rice in the Northwestern IGP of India 
can be considered reliable because there is little evidence of major 
changes in management practices over the past decade and because of 
the small inter-annual variability of Yp for irrigated rice in the region 
(CV = 13%; data not shown). The average Yp from the GYGA was then 
obtained for each field using field-specific GPS coordinates and the 
technology yield gap was calculated as the difference between Yp and 
YHF for unique variety × soil type combinations. 

2.4. Sustainability assessment in relation to N-use efficiency 

N fertilizers are an important driver of cereal yields, particularly rice, 
in South Asia (Ladha et al., 2020), but the nitrogen use efficiency (NUE) 
of South Asian cereal cropping systems remains low (Farnworth et al., 
2017). Opportunities exist to further enhance yield, profitability and 
NUE in these systems through adoption of various precision nutrient 
management techniques (Sapkota et al., 2017, 2020, 2021). Therefore, a 
detailed NUE analysis was conducted to assess the scope to reduce N 
inputs without compromising actual yields. To do so, farmers’ fields 
were classified into four groups of N partial factor productivity (PFP-N, 
kg grain kg− 1 N applied), a commonly used indicator of NUE obtainable 
from farmers’ field data that is defined as the ratio between grain yield 
and N applied (Dobermann, 2005). The four groups were defined based 
on actual yields and N applied as follows: (1) the high yield and high N 
applied group (HYHN) includes fields with actual yields above the mean 
actual yield and with N applied above the mean N applied observed in 
the database, (2) the high yield and low N applied group (HYLN) in
cludes fields with actual yields above the mean actual yield and with N 
applied below the mean N applied observed in the database, and (3) the 
low yield and low N applied group (LYLN) includes fields with actual 
yields below the mean actual yield and with N applied below the mean N 
applied observed in the database. Finally, (4) the low yield and high N 
applied group (LYHN) includes fields with actual yields below the mean 
actual yield and with N applied above the mean N applied observed. 
PFP-N is consequently expected to be greater, on average, for the HYLN 
group followed by the LYLN, HYHN and LYHN groups. 

Following the field classification into different PFP-N groups, further 
analyses looking into variety type, N split, N amount per split and N time 

were conducted to identify opportunities to reduce N applied with little 
or no reductions in rice yields, or in other words, to increase PFP-N. For 
each PFP-N group, the variability in PFP-N was assessed using boxplots 
and the relative proportion of short-, medium- and long-duration vari
eties was estimated to understand the interaction between variety type 
and NUE. The average amount of N applied per split, both in absolute 
and relative terms (i.e., in relation to total N applied) was also sum
marized for each PFP-N group to assess whether differences in PFP-N 
were attributed to the number of N splits, to the amount of N applied 
per split, or both. Moreover, differences in PFP-N were further assessed 
for fields with three or four applications of urea and with or without 
application of diammonium-phosphate (DAP). Finally, the timing of the 
different N splits was compared for each PFP-N group using N calendars 
(Silva et al., 2021a). These summarized the number of fields receiving a 
given N split in each calendar week (Supplementary Fig. S1). 

3. Results 

3.1. Rice yield gaps in the Northwestern Indo-Gangetic Plains 

Rice actual yield (Ya) across the surveyed fields was on average 7.2 t 
ha− 1 (Fig. 3A), which corresponds to ca. 73% of Yp (Fig. 3B). The 
highest-farmers’ yields (YHF) and technical efficient yields (YTEx) across 
the pooled sample were, on average, 8.1 and 7.6 t ha− 1 (Fig. 3A), which 
corresponds to ca. 82% and 78% of Yp (Fig. 3B), respectively. Differ
ences in Yp, YHF, YTEx and Ya were small across states and districts 
(Fig. 3). For instance, considering the state of Haryana, Ya was greatest 
in Kurukshetra (7.3 t ha− 1 or ca. 73% of Yp) and smallest in Ambala 
(6.4 t ha− 1 or ca. 67% of Yp), while Ya in Punjab was greatest in 
Ludhiana (7.7 t ha− 1 or ca. 84% of Yp) and smallest in Fatehgarh Sahib 
(6.9 t ha− 1 or ca. 69% of Yp). In all districts, except Ludhiana where 
actual yield was slightly above 80% of Yp, narrowing yield gaps to the 
YHF resulted in a yield gap closure of ca. 80% of Yp (Fig. 3B). 

Rice yield gaps were mostly attributed to the technology yield gap, 
followed by efficiency and resource yield gaps (Fig. 3). The technology 
yield gap was on average 1.8 t ha− 1 (corresponding to ca. 18% of Yp), 
while the efficiency and resource yield gaps were, on average, 0.5 and 
0.4 t ha− 1 (ca. 5% of Yp), respectively. Yet, there was considerable 

Fig. 3. Rice yield gap decomposition into efficiency, resource and technology yield gaps for the state of Haryana (Ambala, Karnal and Kurukshetra) and Punjab 
(Fatehgarh Sahib, Kapurthala, Ludhiana and Patiala) in the Northwestern Indo-Gangetic Plains of India during the 2020 kharif season. Panel (A) and (B) shows yields 
and yield gaps in absolute (t ha-1) and relative terms (% of Yp), respectively. Yield gap closure refers to the ratio between actual farmers’ yields (Ya) and simulated 
potential yields (Yp). 
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variation in efficiency and resource yield gaps across the surveyed fields 
(Fig. 4). The efficiency yield gap exhibited a normal distribution with 
values ranging between nil and ca. 1.6 t ha− 1 (Fig. 4A). No major dif
ferences in the mean and distribution of the efficiency yield gap were 
observed between fields with varieties of different growth duration 
(Fig. 4A). The distribution of the resource yield gap was slightly left 
skewed and smaller for fields with short-duration varieties than with 
medium- or long-duration varieties (Fig. 4B). Overall, greater Ya resul
ted in smaller efficiency (Fig. 4C) and resource yield gaps (Fig. 4D) 
independently of the varieties cultivated, which indicates that Ya values 
close to Yp were observed in some of the fields surveyed (8.0–9.0 t ha− 1 

vs. 8.7–10.5 t ha− 1). 

3.2. Production frontier and drivers of Ya variability 

The gamma value of the fitted stochastic frontier models was 0.82 
(Table 2), meaning that the random errors ui contribute more to the 
overall model residuals than the random errors vi, and hence, that a 
stochastic frontier approach was preferred over a multiple regression 
approach based on Ordinary-Least Squares (OLS). 

The sign, magnitude and significance level of the parameter esti
mates was rather similar across the different stochastic frontier models 
fitted (Table 2). As Model 3 described the variability observed in the 
data better than the other models, this model was chosen for describing 

the results. Soil texture had a small but statistically significant effect on 
rice yields, with the latter being 0.5% greater in soil types with medium 
texture than in soil types with fine texture. Similarly, seed treatment had 
a small but statistically significant positive effect on rice yield: treated 
seeds resulted in 1.6% greater yields than untreated seeds. Rice yields 
were also statistically different across varieties with different growth 
duration, with short- and medium-duration varieties yielding 4–5% less 
than long-duration varieties. There was no statistically significant yield 
difference between fields in which both herbicides and hand-weeding 
were used and fields where only herbicides were used. Yet, rice yields 
were significantly greater (ca. 5%) in fields where herbicides were used 
than in fields reporting only hand-weeding or no weeding. 

There was a statistically significant positive effect of maximum 
temperature on rice yields, with a 1% change in maximum temperature 
resulting in ca. 0.39% increase in rice yields. By contrast, minimum 
temperature and precipitation had a statistically significant negative 
effect on rice yields: a 1% change in minimum temperature and pre
cipitation resulted in ca. 0.14% and 0.10% decreases in rice yields, 
respectively. The effects of temperature and precipitation on rice yield 
were consistent across the four stochastic frontier models fitted 
(Table 2), although the exact effect size was slightly different for each 
model. For sowing date, both the quadratic and linear terms were sta
tistically significant, indicating rice yields decreased until a minimum 
level was reached, after which rice yields increased. Yet, the effect of 

Fig. 4. Density plot of the (A) efficiency yield gap and (B) resource yield gap as faceted by variety type. Scatterplots showing the relationship between the efficiency 
yield gap and the resource yield gap on the one hand, and the actual yield on the other are shown in panels (C) and (D), respectively. 
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Table 2 
Parameter estimates of the stochastic frontier models describing non-basmati rice production systems in the Northwestern Indo-Gangetic Plains of India during the 
kharif growing season of 2020.  

Variables CD without inefficiency effects 
(Model 1) 

CD with inefficiency effects 
(Model 2) 

TL without inefficiency effects 
(Model 3) 

TL with inefficiency effects 
(Model 4) 

Production frontier     
Intercept 0.091*** 0.093*** 0.072*** 0.075*** 
Texture (Medium) 0.005* 0.005* 0.005* 0.005* 
N applied (kg N ha− 1) 0.005 -0.005 -0.001 0.001 
N applied2   -0.286*** -0.272** 
P2O5 applied (kg P2O5 ha− 1) -0.002*** -0.001 # -0.003 -0.002 
P2O5 applied2   0.001 0.001 
Irrigation number (n) 0.028*** 0.030*** -0.026 -0.018 
Irrigation number2   0.006 0.009 
Sowing date (DOY) -0.017 -0.036 -0.307*** -0.299*** 
Sowing date2   1.555** 1.588** 
Tillage number (n) -0.013** -0.010* -0.022** -0.018* 
Tillage number2   0.047* 0.052** 
Fungicide applied (kg ai kg− 1 ai) -0.005*** 0.004* 0.013*** 0.012*** 
Fungicide applied2   0.022*** 0.011*** 
Herbicide applied (kg ai kg− 1 ai) -0.003 0.001 0.001 0.003 
Herbicide applied2   0.014* 0.013* 
Insecticide applied (kg ai kg− 1 ai) 0.006*** 0.006** 0.001 0.009* 
Insecticide applied2   0.001 0.013*** 
Seed rate (kg ha− 1) -0.004 -0.004 0.001 -0.001 
Seed rate2   -0.089** -0.080* 
Variety type (MD) -0.049*** -0.050*** -0.038*** -0.038*** 
Variety type (SD) -0.058*** -0.058*** -0.046*** -0.045*** 
Seed treatment (Yes) 0.020*** 0.018*** 0.017*** 0.014*** 
Weed control (Herbicide and 
manual) 

-0.005 # -0.002 -0.003 0.001 

Weed control (Manual) -0.024** -0.026** -0.062** -0.066*** 
Weed control (None) -0.024* -0.024* -0.055** -0.055** 
Precipitation (mm) -0.092*** -0.098*** -0.102*** -0.103*** 
Maximum temperature (⸰C) 0.404*** 0.278*** 0.385*** 0.343*** 
Minimum temperature (⸰C) -0.137*** -0.140*** -0.143*** -0.146*** 
N × P2O5   0.005 0.006 
N × Irrigation number   0.055** 0.051** 
N × Sowing date   -0.176 -0.283 # 
N × Tillage number   0.055 0.058 
N × Fungicide   0.016 0.012 
N × Herbicide   -0.043** -0.040** 
N × Insecticide   0.003 -0.001 
N × Seed rate   0.033 0.077* 
P2O5 × Irrigation number   -0.005*** -0.005*** 
P2O5 × Sowing date   -0.004 -0.003 
P2O5 × Tillage number   -0.001 -0.002 
P2O5 × Fungicide   0.000 0.000 
P2O5 × Herbicide   -0.001 -0.001 
P2O5 × Insecticide   0.001 0.001 
P2O5 × Seed   -0.004 # -0.004 # 
Irrigation number × Sowing date   0.091* 0.071 
Irrigation number × Tillage number   0.005 0.005 
Irrigation number × Fungicide   -0.015*** -0.013*** 
Irrigation number × Herbicide   0.000 0.000 
Irrigation number × Insecticide   -0.003 -0.003 
Irrigation number × Seed   -0.079*** -0.078*** 
Sowing date × Tillage number   -0.333*** -0.334*** 
Sowing date × Fungicide   -0.066 # -0.050 
Sowing date × Herbicide   -0.040 -0.040 
Sowing date × Insecticide   0.040 0.045 
Sowing date × Seed   -0.283** -0.244* 
Tillage number × Fungicide   -0.014* -0.012* 
Tillage number × Herbicide   -0.003 -0.001 
Tillage number × Insecticide   -0.012 # -0.013 # 
Tillage number × Seed   -0.001 -0.009 
Fungicide × Herbicide   -0.002 -0.001 
Fungicide × Insecticide   -0.002 -0.004 # 
Fungicide × Seed   -0.001 0.000 
Herbicide × Insecticide   0.002 0.003 
Herbicide × Seed   0.008 0.008 
Insecticide × Seed   0.003 -0.001 
N × medium duration variety   0.035 0.037 
N × short duration variety   0.004 -0.003 
Irrigation number × MD variety   0.021 0.018 
Irrigation number × SD variety   0.019 0.017 
Sowing date × MD variety   0.248** 0.223** 
Sowing date × SD variety   0.163 # 0.154 # 
Seed × MD variety   -0.042*** -0.045*** 
Seed × SD variety   -0.013 -0.015 

(continued on next page) 
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sowing date on rice yield was also generally small and variety-specific as 
indicated by the statistically significant positive interaction between 
sowing date and medium-duration varieties. Nonetheless, statistically 
significant effects of sowing date on rice yield were only observed in 
Models 3 and 4, but not in Models 1 and 2, neither of which consider 
second-order terms. The first-order or second-order terms of irrigation 
number were not statistically significant in Models 3 and 4, as opposed 
to a statistically significant positive effect of irrigation number on rice 
yield in Models 1 and 2. Finally, the effect of seed rates on rice yields was 
not statistically significant for the first order term in either model. It was 
conversely significant and negative for the squared term in Models 3 and 
4. Increasing seed rates was associated with decreased rice yield re
sponses to irrigation number, sowing date and to medium-maturity va
rieties compared to long-duration varieties, but again the effects were 
small and may not be agronomically relevant. 

The effects of N and P applied on rice yield were mostly non- 
significant across the fitted models, a characteristic of high-yielding 
cropping systems (Silva et al., 2017b), whereas the squared and linear 
effects of tillage number and fungicide active ingredient on rice yield 
were statistically significant but with a small effect sizes (Table 2). In the 
case of N applied, only the squared term was statistically significant. 
Rice yield response to N applied increased with increases in the number 
of irrigations and decreased with increases in herbicide use. The number 
of tillage operations reduced rice yields slightly, until a minimum level 
was reached. Rice yield response to sowing date was negatively affected 
by the number of tillage operations, suggesting that if sowing is delayed 
then farmers may wish to consider reducing the tillage rate to avoid 
yield penalty. Fungicide active ingredient positively affected rice yields, 
but less so with increasing number of irrigations applied and tillage 
operations. 

The analysis of the inefficiency effects revealed that sub-optimal 
management in relation to the timing of the inputs applied explained 
part of the variation observed in the efficiency yield gap (Table 2). For 
instance, late applications of the first fertilizer top-dress, and early ap
plications of the second fertilizer top-dress resulted in smaller efficiency 
yield gaps. Similarly, earlier application of insecticide and later appli
cation of fungicide and herbicide also contributed to a smaller efficiency 
yield gap. 

3.3. Crop management in highest-, average-, and lowest-yielding fields 

Rice yields were on average 8.0, 7.1 and 5.9 t ha− 1 in highest-, 
average- and lowest-yielding fields, respectively (Fig. 5; Table S1). The 
number of irrigations was smaller in lowest-yielding fields (26 irriga
tions) than in average- and highest-yielding fields (38 and 42 irrigations, 
respectively; Fig. 5A). Rice yield response to irrigation number for the 
98th percentile followed a non-linear relationship with diminishing 

returns (intercept of ca. 2 t ha− 1 and a local maximum of 8.6 t ha− 1, 
which was reached with 45 irrigations) for the fields reporting more 
than 20 irrigations during the growing season (Fig. 5A). No relationship 
between rice yield and irrigation number was observed for fields 
reporting less than 20 irrigations (Fig. 5A) because these fields were in 
areas with low hydraulic conductivity (i.e., Ambala district; data not 
shown). Despite the yield difference between highest-, average-, and 
lowest-yielding fields, there was no difference in the amount of N 
applied in each field category (Fig. 5B). On average 159 kg N ha− 1 was 
applied in highest-, average-, and lowest-yielding fields (Fig. 5B and 
Table S1). Similar to irrigation number, rice yield response to N applied 
for the 98th percentile followed a non-linear relationship with dimin
ishing returns (Fig. 5B). The intercept was predicted at ca. 1.5 t ha− 1 and 
a local maximum at 8.5 t ha− 1 with ca. 150 kg N ha− 1 applied, beyond 
which rice yield slightly declined (Fig. 5B). 

Rice yield declined with later sowing date (Fig. 5C) and increased 
with later harvest date at the 98th percentile (Fig. 5D). Rice yield 
declined by 20 kg day− 1 after the sowing date of May 1st (day of the 
year, DOY, 122) and increased by 30 kg day− 1 after a harvest date of 
September 9th (DOY 253). Sowing and harvest dates were dependent on 
the type of rice varieties cultivated (Fig. 5C and 5D). Long-duration 
varieties were sown earlier (May 14, on average) and harvested later 
(October 26, on average), than medium- and short-duration varieties. 
Medium-duration varieties were sown on average on May 21 and har
vested on October 14, whereas short-duration varieties were sown on 
average on May 22 and harvested on October 1. No major differences in 
other crop management practices were observed between highest-, 
average- and lowest-yielding fields, respectively (Table S1). 

3.4. N management and N-use efficiency assessment 

Out of 4,107 fields surveyed in Punjab and Haryana, 18%, 35%, 21% 
and 26% were classified as HYHN, HYLN, LYHN and LYLN, respectively. 
Average N applied in HYHN, HYLN, LYHN and LYLN groups was ca. 
180, 150, 180 and 145 kg N ha− 1, corresponding to an average rice yield 
of 7.5, 7.7, 6.6 and 6.5 t ha− 1, respectively (Table 3). Clearly, N applied 
was rather similar across the different PFP-N groups, yet there were 
considerable differences in rice yield across groups (Fig. 6A, Table 3). 
PFP-N for the LYLN group was on average 47 kg grain kg− 1 N, which was 
20% greater than the average PFP-N of the LYHN group (37 kg grain 
kg− 1 N; Fig. 6A). Conversely, PFP-N for the HYLN group was on average 
52 kg grain kg− 1 N; this was also 20% greater than the PFP-N of 41 kg 
grain kg− 1 N observed in the HYHN group (Fig. 6A). 

Fields with long-duration varieties were mostly found in the HYLN 
group (Fig. 6B). The proportion of fields with medium- and short- 
duration varieties was similar across the different PFP-N groups, with 
30% in the LYHN and LYLN groups and 20% in the HYLN and HYHN 

Table 2 (continued ) 

Variables CD without inefficiency effects 
(Model 1) 

CD with inefficiency effects 
(Model 2) 

TL without inefficiency effects 
(Model 3) 

TL with inefficiency effects 
(Model 4) 

Inefficiency effects     
Nursery duration (days)  -0.002  0.001 
Urea 1st top dress (DAT)  -0.009  -0.032* 
Urea 2nd top dress (DAT)  0.153***  0.165*** 
Fallow duration (days)  0.009  0.005 
Insecticide splits (#)  0.020**  0.021** 
1st insecticide application (DAT)  -0.016***  -0.026*** 
1st fungicide application (DAT)  0.037***  0.025*** 
1st herbicide application (DAT)  0.017***  0.013*** 

Model evaluation     
SigmaSq (σ2) 0.010*** 0.010*** 0.009*** 0.009*** 
Gamma (γ) 0.812*** 0.817*** 0.816*** 0.820*** 

Mean technical efficiency (%) 0.94 0.94 0.94 0.94 
Sample size (n) 4107 4107 4107 4107 

Codes: CD = Cobb-Douglas; TL = Translog; LD = long-duration variety, MD = medium-duration variety, SD = short-duration variety, DAT = days after transplanting. 
Significance codes: ‘***’ 0.1%, ‘**’ 1%, ‘*’ 5% and ‘#’ 10%. Note: Supersript 2 indicates the square of the variable. 
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groups (Fig. 6B). PFP-N was 53.5 kg grain kg− 1 N for long-duration 
varieties in the HYLN group and greater than 50 kg grain kg− 1 N for 
medium- and short-duration varieties in the HYLN group (data not 
shown). PFP-N was also similar across the different variety types for the 
fields classified as LYLN (47 kg grain N kg− 1 N), LYHN (37 kg grain kg− 1 

N) and HYHN groups (41 kg grain kg− 1 N, data not shown). 
An average of 50 kg N ha− 1 was applied during 1st and 2nd urea 

splits, irrespective of the PFP-N group (Fig. 6C). N applied in the 1st and 
2nd urea splits was ca. 60% of the total N applied in LYHN and HYHN 
groups and 70% of the total N applied in LYLN and HYLN groups 
(Fig. 6D). N applied on the 3rd split was also on average ca. 50 kg N ha− 1 

for the LYHN and HYHN groups, but slightly lower for the LYLN and 
HYLN groups, ca. 38 and 45 kg N ha− 1, respectively (Fig. 6C). The latter 
corresponded to 30% of total N applied for LYHN, HYHN and HYLN 
groups and to 25% of total N applied for the LYLN group (Fig. 6D). A 4th 

urea split was only observed for fields classified as LYLN and HYHN 
groups, with an average N applied of 5 kg N ha− 1 (Fig. 6C), or 3% of 
total N applied (Fig. 6D), whereas less than 1% of the fields the high PFP- 
N groups (LYLN and HYLN) reported a 4th urea split. On average 20 kg N 
ha− 1, or 10% of total N applied, was provided as DAP, mostly basal, in 
the low PFP-N groups (LYHN and HYHN), whereas barely any N was 
applied as DAP in the high PFP-N groups (LYLN and HYLN; Fig. 6C and 

6D). In summary, the greater PFP-N observed in the LYLN and HYLN 
groups, relative to the LYHN and HYHN groups, was associated with 
slightly lower amounts of N applied in the 3rd urea split and with barely 
any N applied as a 4th urea split late in the season and as DAP early in the 
season. 

The variation observed in PFP-N was partly explained by the number 
of urea splits and by the type of fertilizer used (Fig. 6E–H), and partly by 
the timing of N application of the different splits (Table 2; Suppl. Fig. 
S1). The most common N management strategy observed in the low PFP- 
N groups was the application of three urea splits with the application of 
basal DAP. The latter was observed on 723 and 579 fields in the LYHN 
and HYHN groups, respectively (Fig. 6E and 6F). Conversely, most fields 
in high PFP-N groups used 3 urea splits only (i.e., 771 fields in the LYLN 
group and 1,307 fields in the HYLN group; Fig. 6G and 6H). For the 
LYHN group, PFP-N was slightly greater in fields with three urea splits 
than in fields with four urea splits, 37 vs. 33 kg N kg− 1 N, independently 
of whether basal DAP was used or not (Fig. 6E). For the HYHN group, 
PFP-N was lower on average for the fields receiving four applications of 
urea and basal DAP, i.e., 36 kg grain kg− 1 N, than for the fields with 
three urea applications (with and without basal DAP, 43 kg grain kg− 1 

N, respectively) and with four urea applications without basal DAP 
(41 kg grain kg− 1 N; Fig. 6F). Finally, no major differences in PFP-N 

Fig. 5. Rice yield response to (A) number of irrigations, (B) N applied, (C) sowing date and (D) harvest date in the Northwestern Indo-Gangetic Plains of India during 
the 2020 kharif season. Solid lines show the 98th quantile regressions. Dashed lines in (A) and (B) show the average rice yield on the one hand and the average 
irrigation number and N applied on the other, respectively, for highest- (YHF), average- (YAF) and lowest-yielding fields (YLF). Dashed lines in (C) and (D) show the 
average rice yield on the one hand and the average transplanting and harvest dates on the other, respectively, for long- (LD), medium- (MD) and short-duration 
varieties (SD). Fields with irrigation number lower than 20 were located in a region with low hydraulic conductivity and hence, are shown separately in panel (A). 
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were observed on average for the LYLN and the HYLN groups across 
number of urea splits and use of basal DAP with an average PFP-N of ca. 
50 kg grain kg− 1 N (Fig. 6G and 6H). 

4. Discussion 

4.1. High-yielding rice systems in the Northwestern IGP of India 

The states of Punjab and Haryana in the Northwestern IGP of India 
are popularly known as the ’rice bowl’ and ’breadbasket’ of India 
(Dhillon et al., 2010; Chauhan et al., 2012). Rice yield gaps in this region 
were small, accounting on average to 2.7 t ha− 1 for an average Yp of 
9.8 t ha− 1 corresponding to a yield gap closure of 70–80% of Yp 
(Fig. 6B), an often-quoted level of yield gap closure for high-yielding 
cropping systems (Silva et al., 2021b; van Ittersum et al., 2013; Lobell 
et al., 2009). A similar level of yield gap closure, i.e., 70–80% of Yp, was 
observed for intensive rice cropping systems in Southern Vietnam 
(Stuart et al., 2016) and in parts of China (Deng et al., 2019). Rice yields 
in the Northwestern IGP are close to the potential yield due to favorable 
alluvial soils and weather conditions for rice cultivation and high levels 
of inputs applied (Bhandari et al., 2017; Bhatt et al., 2021), particularly 
irrigation water and N fertilizers (Fig. 5A and 5B; Koshal, 2014). The 
latter is made possible through policies subsidizing and promoting the 
use of electricity and fertilizers to farmers. Our data also showed that 
there were no major differences in rice yield and input use across the 
districts covered by the field survey. 

The small rice yield gaps in the Northwestern IGP of India were 
mostly explained by the technology yield gap (10–20% of Yp; Fig. 3). 
The efficiency yield gap explained on average 5% of Yp, whereas the 
resource yield gap was negligible across most districts. These findings 
are consistent with those found for intensive arable crops in the 
Netherlands (Silva et al., 2017b) and are to be expected in high-yielding 
cropping systems such as those studied here. Small resource yield gaps 
are the result of high use, and sometimes overuse, of inputs as shown 
here for the case of N applied (Fig. 6). Small efficiency yield gaps indi
cate that current technologies and management practices allow most 
farmers to manage inputs efficiently in relation to the time, space and 
form of inputs applied (cf. Fig. 6 and Suppl. Fig. S1). Yet, there is scope 
for improvement, for example to fine-tune the timing of the 2nd top dress 

Table 3 
Sample size and average value of selected management practices across different 
N partial factor productivity groups.   

HYHN HYLN LYHN LYLN 

Number of fields (n)  724  1,447  865  1,071 
Sample size per district         

Ambala  45  69  287  251 
Kurukshetra  282  81  175  81 
Karnal  123  86  190  172 
Ludhiana  42  444  33  61 
Patiala  20  345  8  173 
Kapurthala  210  155  171  34 
Fatehgarh Sahib  1  267    301 

Rice grain yield (t ha− 1)  7.5  7.7  6.6  6.6 
N applied (kg N ha− 1)  181.5  149.1  178.8  143.0 
PFP (kg grain kg− 1 N)  41.4  51.8  37.0  47.0 
Nitrogen splits (n)  4.1  3.1  4.1  3.2 
DAP basal (kg ha− 1)  45.7  40.6  44.3  46.1 
DAP 1st top dress (kg ha− 1)  45.2  46.7  46.1  42.4 
DAP 1st top dress (DAT)  7.2  5.6  5.9  6.5 
Urea 1st top dress (kg ha− 1)  45.8  44.3  45.1  44.1 
Urea 2nd top dress (kg ha− 1)  45.2  44.0  45.1  43.1 
Urea 3rd top dress (kg ha− 1)  44.8  40.5  44.4  36.1 
Urea 4th top dress (kg ha− 1)  30.9  18.0  30.1  25.0 
Urea 1st top dress (DAT)  10.2  9.3  10.3  10.4 
Urea 2nd top dress (DAT)  20.7  19.9  21.2  20.9 
Urea 3rd top dress (DAT)  33.1  32.1  33.5  31.7 
Urea 4th top dress (DAT)  40.6  38.3  41.3  37.6 
Irrigation number (n)  43.7  41.0  32.9  31.8 
Sowing date (Julian day)  139.2  138.5  141.3  142.3 
Harvest date (Julian day)  285.2  291.0  283.2  283.5 

Data refer to the non-basmati rice during the kharif 2020 growing season. Codes: 
LD = long-duration variety, MD = medium-duration variety, SD = short-dura
tion variety, DAT = days after transplanting; HYHN = high yield high N; 
HYLN = high yield low N; LYHN = low yield high N; LYLN: low yield low N. 

Fig. 6. N-use efficiency assessment for rice in the Northwestern Indo-Gangetic Plains of India during the 2020 kharif season: (A) Variability in N partial factor 
productivity (PFP-N) across different PFP-N groups; (B) Proportion of PFP-N groups for different variety type; (C) Average amount of N applied per N split for 
different PFP-N groups; (D) Proportion of N applied per N split to total N applied for different PFP-N groups; (E)-(H) Variation in PFP-N across PFP-N groups based on 
different combinations of N splits and fertilizer types. Codes: HYHN = fields with high yield and high N applied; HYLN = fields with high yield and low N applied; 
LYLN = fields with low yield and low N applied and, LYHN = fields with low yield and high N applied, LD = long-duration, MD = medium-duration and 
SD = short duration. 
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of urea as well as the timing of the 1st application of most plant pro
tection products (cf. Table 2). Large technology yield gaps in 
high-yielding cropping systems are most likely the result of management 
imperfections in relation to pests and diseases (Buresh et al., 2021), 
which are challenging to overcome in larger commercial fields with less 
intensive day-to-day observation and management by farmers. Other 
factors not controlled for in our analysis, including micronutrient de
ficiencies or herbicide resistant weeds (Bhatt et al., 2016, 2021), or the 
lack of adoption of land levelling and other precision agriculture tech
nologies (Aryal et al., 2015), might also explain the technology yield gap 
for rice in the Northwestern IGP of India. 

The biophysical and management determinants of rice yield vari
ability in our study were identified using stochastic frontier analysis. 
The quadratic response from applied N fertilizers (negative response 
after a plateau) and declining N partial factor productivity with 
increased N application rates suggest there is scope to improve NUE. 
Minimum and maximum temperature had a significant negative and 
positive effect on rice yield, respectively. It is well-known that rice yield 
declines with increases in minimum temperatures, which have been 
linked to higher physiological maintenance respiration with increases in 
minimum (night) temperature, which can reduce the accumulation of 
assimilates and affect yield (Peng et al., 2004). The strong negative ef
fect of rainfall on rice yield might be explained by lower amounts of 
radiation intercepted with increases in rainfall. 

Regarding crop management practices, the effects of number of 
tillage operations, sowing date, variety type and management of pests, 
diseases, and weeds (e.g., seed treatment, amount of plant protection 
products applied and weed control method) on rice yield were clearer 
than those associated with water and nutrient management. Rice yield 
was also affected by interactions between crop management practices 
(Table 2). For instance, rice yield response to N applied increased with 
the number of irrigations whereas rice yield response to P applied 
decreased with the number of irrigations. The former is expected 
because irrigation helps mobilizing free nitrate in the soil and favors 
uptake of N through transpiration driven mass flow and diffusion (Plett 
et al., 2020) whereas the latter might be the result of greater indigenous 
soil P availability under saturated conditions (Ponnamperuma, 1972). 
Similar to (Silva et al., 2017a), rice yield response to N applied increased 
with lower amounts of herbicide due to lower weed infestation level 
when herbicide applications were also lower (data not shown). As weeds 
compete for nutrients, radiation, and water with crops (Blackshaw et al. 
2005), their presence can hamper crop yield responses to N if they are 
not adequately managed (Gholamhoseini et al., 2013). Similarly, a 
greater response to N and Zn was observed where herbicide application 
was lower; this is a proxy of lower weed infestation levels (data not 
shown). 

4.2. N management and sustainable rice production 

The small yield gap observed for kharif rice in the Northwestern IGP 
of India indicates little scope to further increase rice yields and hence, 
that opportunities to improve the economic and environmental sus
tainability of rice cropping in the region must also be considered. 
Judicious N management is essential to balance the economic and 
environmental performance of cereal cropping systems (Sapkota et al., 
2020; Parihar et al., 2017b, 2017a). Currently, the Government of India 
subsidizes 75% of the production cost of urea, meaning that inefficient N 
management is indirectly associated with considerable risk of economic 
losses at national scale (Ministry of Chemicals and Fertilizers, 2016). 
From an environmental perspective, the application of 100 kg of N can 
also result into emission of about 1.2 kg of N in the form of N2O from the 
soil (Albanito et al., 2017). As the NUE of India is one of the lowest in the 
world (Farnworth et al., 2017), it is indispensable to improve NUE of 
Indian agriculture, particularly in regions with high N use (Ladha et al., 
2020), such as the Northwestern IGP. The latter must be linked with a 
reduction of the N surplus (i.e., the difference between N input and N 

output), which is also high in the states of Punjab and Haryana (Maaz 
et al. 2021). Improving NUE and reducing N surplus in situations where 
both N input and N output are high requires reductions in N input, 
without compromising N output (Silva et al., 2021a). The small rice 
yield response to N applied (Table 2), the similar N rates across highest-, 
average- and lowest-yielding fields (Fig. 5B), and the declining PFP-N 
with increased N application (Fig. 6) observed in this study suggest 
that there is scope to improve NUE in the Northwestern IGP of India by 
reducing N rate. The simple fact that many fields had more N applied 
than observed in highest-yielding fields indicates it is possible to reduce 
N application rates without compromising rice yields. 

Our results showed that farmers adopting long-duration varieties 
managed N more efficiently than those adopting medium- and short- 
duration varieties (Fig. 6B). Long-duration varieties have greater yield 
potential than medium- and short-duration varieties and hence, require 
greater N application rates and the sustained supply of N over longer 
periods. Yet, the N application rates reported by farmers in our dataset 
were not tuned to the type of variety cultivated, which results in dif
ferences in PFP-N across variety types (Fig. 6B). Excess N application is 
associated with yield decline under some circumstances and a potential 
reduction in grain quality due to increased pest and disease pressure, 
lodging or induced soil acidity over time (Cassman and Harwood, 1995; 
Guo et al., 2010; Ogoshi et al., 2020). Increasing PFP-N in fields with 
medium- and short-duration varieties is possible (e.g., Fig. 6D), yet it 
requires smaller N application rates than currently observed for those 
variety types. Fine-tuning the source of N fertiliser and the number of 
fertiliser splits can also contribute to increased NUE for rice in the 
Northwestern IGP. For instance, a 4th urea split later in season could 
have been saved in some of the fields surveyed (Fig. 6 and Supple
mentary Fig. 1). The amount of N applied in the 3rd urea split should be 
also attuned to the amount of basal DAP applied to satisfy crop re
quirements of P while considering the addition of N (Fig. 6C–6H). 
Timelier N management also seems to be possible given the large vari
ation observed in fertiliser application dates (Supplementary Fig. 1), 
which can contribute to improve N-use efficiency through narrowing 
efficiency yield gaps (Table 2). 

4.3. Harnessing data from farmers’ fields to inform sustainable 
intensification 

Declining ground water levels, deteriorating soil quality, reductions 
in resource-use efficiencies, herbicide resistant weeds, and the threat 
climate change are the major sustainability issues and production con
straints for rice production systems in much of the intensively cropped 
areas of the IGP India (Bhatt et al., 2021, Chauhan et al., 2012). 
Traditional agronomic research conducted on-station is primairly 
focused on testing alternative management practices and improved 
technologies for rice production through manipulative experimentation 
(Jat et al., 2019; Jat et al., 2020). On-station experiments, however, 
cannot easily account for the large number of management configura
tions and potential effects of environmental heterogenity that is typi
cally observed in farmers’ fields. Moreover, the technologies performing 
best on station might not be easily adopted by farmers due to resource 
constraints or other barriers that prevent their uptake. Conversely, as 
demonstrated in this paper, large databases of farmer field data coupled 
with spatially-explicit biophysical data can be used to assess a wide 
range of management practices and their interaction with environ
mental factors in a comparatively cost-effective way (Cassman and 
Grassini, 2020). In particular, this approach helped inform what appear 
to be more appropriate N management practices given the farmers’ 
production conditions and resource constraints (e.g., Fig. 6). 

This study focused on rice yields and yield gaps as well as on sus
tainable N use. Future studies should also assess the sustainability of 
crop production across scales based on multiple criteria relevant for 
farmers and stakeholders at large (e.g., Devkota et al. 2019, Silva et al., 
2018). The latter include energy-use efficiency, greenhouse gas 
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emissions, profitability, and other socio-economic aspects influencing 
labor productivity and the gender appropriateness of management 
practices. Farmer field data can also be used to rank farmers based on 
multiple criteria and to make explicit to policy-makers what synergies 
and tradeoffs between the different indicators might exist. Finally, as
sessments at the crop level, as presented here, must be complemented 
with assessments at the cropping systems level (Guilpart et al., 2017). 
This will aid in capturing the interactions between different crops in the 
cropping sequence, which is of critical importance for the sustainable 
intensification of rice-wheat cropping systems in South Asia. 

5. Conclusion 

A large database of farmer field data characterizing rice cultivation 
in the Northwestern Indo-Gangetic Plains (IGP) of India was used to 
estimate and decompose rice yield gaps and to assess the scope for 
sustainable intensification through improved resource-use efficiency in 
the region. Rice yield gaps in the Green Revolution corridor of Punjab 
and Haryana were small, in the range of 20–30% of the potential yield – 
a feature of high-yielding cropping systems. Most of the existing yield 
gap was explained by the technology yield gap (10–20% of the potential 
yield), whereas efficiency and resource yield gaps were small (less than 
10% of the potential yield). The technology yield gap relates to man
agement imperfections in relation to pests and diseases, and to other 
factors not controlled for in our analysis such as the adoption of preci
sion agriculture technologies. The small resource yield gap is the result 
of high use, and sometimes overuse, of inputs. The small efficiency yield 
gap indicates that there is little scope to improve crop management in 
terms of the time and form of inputs applied. Yet, it is questionable 
whether rice yield gaps should be further narrowed given economic and 
environmental considerations for farmers. For instance, the small yield 
gap observed in this study was associated with high N application rates 
and with a small yield response to N applied and to irrigation number. 
There is thus considerable scope to improve NUE in this region, partic
ularly by attuning N application rates to the crop variety being grown, 
by adjusting the amount of subsequent urea split to the amount of basal 
DAP applied, and by saving a 4th urea application later in the season. 
Future studies should assess the scope to reduce irrigation water, and 
increase water productivity and energy-use efficiency, and broaden the 
current sustainability assessment to other indicators related to profit
ability and environmental issues at the cropping systems level. 
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